Fitormone

Da Wikipedia, l'enciclopedia libera.

Un fitormone od ormone vegetale (in inglese: PGRs plant growth regulators) è un composto organico naturale, sintetizzato dalle piante che ne influenza, in genere a basse concentrazioni i processi di crescita, differenziamento e sviluppo.

Gli ormoni, negli animali superiori, in genere (ma non sempre) hanno un sito di sintesi specifico di sintesi, e sono trasportati dal sangue ad un organo bersaglio; dove, anche a bassa concentrazione, modulano una risposta fisiologica specifica. Ciò è valido anche per gli ormoni vegetali, anche se essi, al contrario degli ormoni degli animali superiori, non sono prodotti in ghiandole specializzate, ma in zone non specializzate in questa funzione, come ad esempio il corpus dell'apice meristematico del fusto o della radice. In passato si credeva che gli ormoni vegetali non avessero dei recettori proteici, dagli anni ottanta sono stati scoperti molti recettori e vie di trasduzione del segnale dei fitormoni, simili a quelle degli ormoni animali.

Una classificazione dei fitormoni[modifica | modifica sorgente]

  1. Auxine
  2. Citochinine
  3. Gibberelline
  4. Acido abscissico
  5. Acido jasmonico
  6. Etilene
  7. Brassinosteroidi
  8. Acido salicilico
  9. Poliammine
  10. Turgorine
  11. Strigolattoni

Modello ipotetico del meccanismo d'azione dei fitormoni:

\mathrm{H} + \mathrm{R}\; Frecce.png\mathrm{HR}\longrightarrow \mathrm{X_1}\longrightarrow \mathrm{X_2}\longrightarrow \mathrm{X_n}\longrightarrow\mathrm{Risposta}\;

H, ormone; R, recettore; HR, complesso ormone-recettore (reazione reversibile), X, diverse tappe che, con un meccanismo a cascata, portano alla risposta.

Azione fitormoni.png

Figura 1: Modello, semplificato, dell'azione dei fitormoni

  • Legenda:
  1. Fitormone
  2. Recettore
  3. Secondi messaggeri
  4. Segnale ad altri messaggeri nel citoplasma
  5. Si attiva una proteina che interagendo con il DNA, induce la trascrizione di geni specifici
  6. Trascrizione del DNA in mRNA
  7. Traduzione dell’mRNA in proteine

Le funzioni dei fitormoni[modifica | modifica sorgente]

  1. Regolazione dell'espressione genica di fattori di trascrizione;
  2. Attivazione o disattivazione di vie di trasduzione del segnale;
  3. Stimolo, rafforzamento di processi già in atto;
  4. Induzione, innesco di processi non in atto;
  5. Inibizione, diminuzione dell'entità di un processo o blocco del suo innesco;
  6. Regolazione dei processi di crescita, sviluppo, riproduzione, morte.
  7. Risposta agli stress biotici e abiotici esterni
  8. Regolazione della durata della vita

I metodi di studio[modifica | modifica sorgente]

  1. Dosaggi biologici, metodiche che possono variare secondo il fitormone considerato
  2. Metodi chimico-fisici
  3. Metodi immunochimici
  4. Metodi immunocitochimici
  5. Metodi di genetica e biologia molecolare

Dosaggi biologici[modifica | modifica sorgente]

Auxine
Sistema modello Risposta studiata Tipo di analisi
Segmenti di coleoptili Fusto di plantule di pisello, sezione longitudinale Allungamento del coleottile Curvatura dell’asse delle due sezioni. Acidificazione del mezzo Misura della lunghezza e dell’angolo di curvatura (Figura 2) Misura del pH
Gibberelline
Mutanti nani di piante di pomodoro Plantule di lattuga Superamento del nanismo Crescita dell’ipocotile Misure di lunghezza Valutazione dell’attività enzimatica
Etilene
Plantule di pisello Inibizione della crescita del fusto, espansione laterale delle radici, insensibilità alla gravità. Misure di lunghezza, larghezza e angoli di curvatura
Acido abscissico
Epicotile di pisello Coleottile di avena Semi di lattuga o ravanello Epidermide fogliare Misura di lunghezza e di curvatura Osservazione microscopica Misura di lunghezza e di curvatura Osservazione microscopica
Citochinine
Cotiledoni da semi di ravanello, zucca, all’inizio della germinazione Aumento del peso del callo Ritardo nella degradazione della clorofilla Stimolo della crescita per distensione Misure di larghezza Misure di peso Valutazione colorimetrica del contenuto di clorofilla.

Test pisello.png

Figura 2: Il test del pisello

  1. Segmento di internodo di pisello cresciuto al buio, con fessurazione longitudinale e curvatura naturale. Controllo, immerso in soluzione priva di auxina.
  2. Curvatura quando viene immerso in una soluzione con elevata concentrazione di auxina.
  3. Curvatura quando viene immerso in una soluzione con bassa concentrazione di auxina.

Test poco sensibile; la curvatura (a) è proporzionale al logaritmo della concentrazione di auxina. Viene eseguito facendo germinare al buio, per circa una settimana, i semi di pisello. Il test viene eseguito quando i fusticini hanno raggiunto una lunghezza di circa 11 cm.

Metodi chimico-fisici[modifica | modifica sorgente]

I metodi chimico-fisici attualmente più utilizzati per l’identificazione e la quantificazione di molecole ad azione ormonale, si basano sostanzialmente su tecniche HPLC o di gascromatografia (GC) associate ad altre tecniche (esempio GC abbinate a gas massa: GC-MS).

Vantaggi[modifica | modifica sorgente]

  • capacità di discriminare tra molecole con struttura chimica anche molto simile
  • elevata sensibilità.

Svantaggi:

  • necessità di operare su campioni piuttosto purificati.

Metodi immunochimici[modifica | modifica sorgente]

Si basano sulla disponibilità di anticorpi monoclonali contro le singole molecole PGRs Tali anticorpi, immobilizzati su resina, vengono incubati con il campione in esame e con quantità note dell'ormone legato ad un enzima o marcato con un nuclide radioattivo. I livelli di attività dell'enzima o la radioattività misurabili sul substrato solido dopo lavaggio risultano inversamente proporzionali alla concentrazione dell'ormone presente nel campione che risulta quindi facilmente calcolabile. Questi metodi sono noti con il nome di

  • "enzyme-linked immunosorbant assay " (ELISA), se legata ad attività enzimatica
  • "radioimmunoassay" (RIA) se marcata con un nuclide radioattivo.

Vantaggi: alta selettività elevata sensibilità Svantaggi:

  • Alte concentrazioni di altre molecole con affinità per l'anticorpo, potrebbero inattivarlo.

Metodi immunocitochimici[modifica | modifica sorgente]

Tali tecniche, applicate recentemente allo studio dei PRGs, consentono di localizzare antigeni organo-specifici in un'ampia varietà di tessuti vegetali.

Le sezioni del tessuto, adeguatamente preparate, vengono poste in contatto con anticorpi specifici, che successivamente vengono riconosciuti da anticorpi secondari coniugati a gruppi cromofori. Utilizzando tecniche di microscopia, è possibile riconoscerne la presenza e localizzarne la presenza a livello tissutale o cellulare. Vantaggi:

  • Riduzione dei problemi di estrazione
  • Possibilità di evidenziare quantità minime di PRGs

Bibliografia[modifica | modifica sorgente]

  • C.Cappelletti, Trattato di botanica, UTET, Torino 1975, Vol. I
  • J.D. Cohen, et al. Comparison of a Commercial ELISA Assay for Indole-3Acetic Acid at Several Stages of Purification and Analysis by Gas Chromatography-Selected Ion Monitoring Mass Spectrometry Using a 13C6-Labeled Internal Standard. Plant Physiology 84, 982-986 (1987)
  • H.Belefant, F. Fong, Abscisic Acid ELISA: Organic Acid Interference. Plant Physiology 91, 1467-1470 (1989)

Voci correlate[modifica | modifica sorgente]

botanica Portale Botanica: accedi alle voci di Wikipedia che trattano di botanica