Convalida incrociata

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

La convalida incrociata (cross-validation in inglese) è una tecnica statistica[1] utilizzabile in presenza di una buona numerosità del campione osservato. In particolare, la convalida incrociata cosiddetta k-fold consiste nella suddivisione dell'insieme di dati totale in k parti di uguale numerosità e, a ogni passo, la kª parte dell'insieme di dati viene a essere quella di convalida, mentre la restante parte costituisce sempre l'insieme di addestramento. Così si allena il modello per ognuna delle k parti, evitando quindi problemi di sovradattamento, ma anche di campionamento asimmetrico (e quindi affetto da distorsione) del campione osservato, tipico della suddivisione dei dati in due sole parti (ossia addestramento/convalida). In altre parole, si suddivide il campione osservato in gruppi di egual numerosità, si esclude iterativamente un gruppo alla volta e si cerca di predirlo coi gruppi non esclusi, al fine di verificare la bontà del modello di predizione utilizzato.

Note[modifica | modifica wikitesto]

Bibliografia[modifica | modifica wikitesto]

  • I. Witten, E. Frank: Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann
  • R. Duda, P. Hart, D. Stork: Pattern Classification, Wiley
  • T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]