File proveniente da Wikimedia Commons. Clicca per visitare la pagina originale

File:Kerr photon orbit with zero axial angular momentum.gif

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Kerr_photon_orbit_with_zero_axial_angular_momentum.gif(758 × 500 pixel, dimensione del file: 7,38 MB, tipo MIME: image/gif, ciclico, 393 frame, 17 s)

Nota: a causa di limitazioni tecniche, le miniature delle immagini GIF ad alta risoluzione come questa non saranno animate.

Logo di Commons
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)

Dettagli

Descrizione
Deutsch: Photonenorbit um ein mit mit dem Spinparameter a=Jc/G/M²=1 rotierendes schwarzes Loch. Der Boyer-Lindquist Radius ist konstant r⊥°=(1+√2)GM/c². Axialer Drehimpuls: Lz=0 (aufgrund des Frame-Dragging-Effekts ist der beobachtete Inklinationswinkel kleiner als 90°; für die Version auf r⊥°=3GM/c² mit scheinbar verschwindendem axialen Drehimpuls, in der dieser den Effekt des Frame-Draggings genau aufhebt geht es hier entlang.
English: Photon-orbit around a rotating black hole with the spin-parameter a=Jc/G/M²=1. The Boyer-Lindquist radius is constant at r⊥°=(1+√2)GM/c². Because of the inertial-frame-dragging the zero axial angular momentum, Lz=0, gives an observed inclination angle of smaller than 90°; for a version where a negative Lz exactly cancels out the equatorial fram-dragging click here.
Data
Fonte Opera propria Text: de.wikipedia.org/wiki/Kerr-Metrik, other versions: photon orbit @ r=3
Autore Yukterez (Simon Tyran, Vienna)
Altre versioni
Animated thumbnail Kerr photon orbit with zero axial angular momentum thumbnail.gif
mini

Display

en

01) Coordinate time              08) Axial radius of gyration     15) Axial angular momentum       22) Framedragging delayed angular velocity
02) Affine parameter             09) Poloidial radius of gyration 16) Polar angular momentum       23) Framedragging local velocity
03) Total time dilation          10) Radial coefficient           17) Radial momentum              24) Framedragging observed velocity
04) Gravitational time dilation  11) E kinetic                    18) Cartesian radius             25) Observed particle velocity
05) Boyer Lindquist radius       12) Potential energy component   19) Cartesian X-axis             26) Local escape velocity
06) BL Longitude in radians      13) Total particle energy        20) Cartesian Y-axis             27) Delayed particle velocity
07) BL Latitude in radians       14) Carter Constant              21) Cartesian Z-axis             28) Local particle velocity

de

01) Koordinatenzeit              08) Axialer Gyrationsradius      15) Axialer Drehimpuls           22) Framedrag verzögerte Winkelgeschwindigkeit
02) Affiner Parameter            09) Poloidialer Gyrationsradius  16) Polarer Drehimpuls           23) Framedrag lokale Transversalgeschwindigkeit
03) Insgesamte Zeitdilatation    10) Radialer Vorfaktor           17) Radialer Impuls              24) Framedrag beobachtete Transversalgeschwindigkeit
04) Gravitative  Zeitdilatation  11) E kinetisch                  18) Kartesischer Radius          25) Beobachtete Totalgeschwindigkeit
05) Boyer Lindquist Radius       12) Potentielle Energie          19) Kartesische X-Achse          26) Lokale Fluchtgeschwindigkeit
06) BL Längengrad in Radianten   13) Totale Energie               20) Kartesische Y-Achse          27) Verzögerte Geschwindigkeit
07) BL Breitengrad in Radianten  14) Carter Konstante             21) Kartesische Z-Achse          28) Lokale Geschwindigkeit relativ zum ZAMO

Bahnneigungswinkel nach Radius

Für ein gegebenes a und r und ausgehend von θ0=π/2 kann der benötigte Bahnneigungswinkel δ0 für die Kreisbahn eines Photons gefunden werden indem[1]

gesetzt und nach δ0 aufgelöst wird. Die realen Lösungen des Polynoms geben eine mögliche Bahn in die positive, und eine in die negative z-Richtung (aufgrund der axialen Symmetrie sind auf einem r jeweils 2 zueinander gespiegelte Orbits möglich). Die Terme der obigen Gleichung sind:

Bewegungsgleichungen

Alle Formeln sind in natürlichen Einheiten:

Koordinatenzeitableitung nach der Eigenzeit (dt/dτ), wobei τ für masselose Testteilchen zum affinen Parameter λ wird:

Radialkoordinatenableitung (dr/dτ):

Radiale Impulskomponentenableitung:

Zusammenhang mit der lokalen Geschwindigkeit:

Breitengradableitung (dθ/dτ):

Drehimpulsableitung auf der θ-Achse (pθ/dτ):

Zusammenhang mit der lokalen Geschwindigkeit:

Längengradableitung (dФ/dτ):

Drehimpulsableitung auf der Ф-Achse (pФ/dτ):

Erhaltungsgröße Carter-Konstante:

Daraus abgeleitete Erhaltungsgröße:

Erhaltungsgröße Gesamtenergie:

Erhaltungsgröße Drehimpuls entlang Ф:

mit dem Radius der Gyration

Frame Dragging Winkelableitung (dФ/dt):

Gravitative Zeitdilatationskomponente (dt/dτ):

Lokale Geschwindigkeit auf der r-Achse:

Lokale Geschwindigkeit auf der θ-Achse:

Lokale Geschwindigkeit auf der Ф-Achse:

Kartesische Koordinaten:

Beobachtete Geschwindigkeit:

Die radiale Fluchtgeschwindigkeit ergibt sich aus dem Verhältnis:

zusammengefasste Terme:

Quellen:[2][3][4][5][6][7]

en

For an english version of the equations of motions click here

Referenzen

  1. Simon Tyran: Kreisbahnen in der Kerr-Raumzeit
  2. Pu, Yun, Younsi & Yoon: General-relativistic radiative transfer in Kerr spacetime, S. 2+
  3. Janna Levin & Gabe Perez-Giz: A Periodic Table for Black Hole Orbits, S. 30+
  4. Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes, S. 5+
  5. Janna Levin & Gabe Perez-Giz: The Phase Space Portrait, S. 2+
  6. Misner, Thorne & Wheeler (MTW): Die Bibel copia archiviata at the Wayback Machine, S. 897+
  7. Simon Tyran: Kerr Orbits / Gravitationslinsen

Licenza

Io, detentore del copyright su quest'opera, dichiaro di pubblicarla con la seguente licenza:
w:it:Creative Commons
attribuzione condividi allo stesso modo
Tu sei libero:
  • di condividere – di copiare, distribuire e trasmettere quest'opera
  • di modificare – di adattare l'opera
Alle seguenti condizioni:
  • attribuzione – Devi fornire i crediti appropriati, un collegamento alla licenza e indicare se sono state apportate modifiche. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che il licenziante approvi te o il tuo uso.
  • condividi allo stesso modo – Se remixi, trasformi o sviluppi il materiale, devi distribuire i tuoi contributi in base alla stessa licenza o compatibile all'originale.

File usage in Wikipedia articles

de.wikipedia.org/wiki/Kerr-Metrik

Annotazioni
InfoField
Questa immagine è annotata: Vedi le annotazioni su Commons

Didascalie

Aggiungi una brevissima spiegazione di ciò che questo file rappresenta
Polar photon orbit around a spinning Kerr black hole

Elementi ritratti in questo file

raffigura

image/gif

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale01:58, 6 nov 2022Miniatura della versione delle 01:58, 6 nov 2022758 × 500 (7,38 MB)Yukterezthe Q was missing a ²
15:05, 26 lug 2017Miniatura della versione delle 15:05, 26 lug 2017758 × 500 (7,38 MB)Yukterezaccidentally uploaded the much larger file with the observed, but not truly nonzero angular momentum
14:58, 26 lug 2017Miniatura della versione delle 14:58, 26 lug 2017758 × 500 (17,57 MB)Yukterezmore spacing for the units
00:41, 26 lug 2017Miniatura della versione delle 00:41, 26 lug 2017758 × 500 (7,38 MB)Yukterezthe energy in the display accidentaly had units of mc² instead of hf
10:57, 22 lug 2017Miniatura della versione delle 10:57, 22 lug 2017758 × 500 (7,4 MB)Yukterezsetting significant digits in the numerical display to 6 to better fit them into the frame
12:57, 21 lug 2017Miniatura della versione delle 12:57, 21 lug 2017758 × 500 (8,82 MB)YukterezUser created page with UploadWizard

Nessuna pagina utilizza questo file.

Metadati