Teoria ergodica

Da Wikipedia, l'enciclopedia libera.

La teoria ergodica (dal greco ἔργον érgon, lavoro, energia e ὁδός hodós «via, percorso»[1]) si occupa principalmente dello studio matematico del comportamento medio, a lungo termine, di sistemi dinamici.

Descrizione[modifica | modifica wikitesto]

Il termine ergodico è stato introdotto da Ludwig Boltzmann (1844-1906) con riferimento ai sistemi meccanici complessi capaci di assumere, spontaneamente tutti gli stati dinamici microscopici compatibili con il loro stato macroscopico. Le particelle costituenti il sistema, cioè, assumono ogni insieme di valori istantanei di posizione e velocità le cui caratteristiche medie corrispondono allo stato macroscopico del sistema. L'ipotesi ergodica, una formulazione più tecnica, è stata proposta da Josiah Willard Gibbs (1839-1903). Essa prevede che la media temporale di una proprietà del sistema sia equivalente alla media istantanea della medesima proprietà nell'insieme canonico quando il numero dei sistemi tende all'infinito.

Se lo stato del sistema è rappresentato con un punto che si muove in un opportuno spazio delle fasi, e vincolato da considerazioni energetiche su una particolare superficie immersa in esso, l'ipotesi ergodica assicura che il punto finirebbe col passare prima o poi per tutti i punti della superficie. Questa congettura si è dimostrata falsa se applicata alla generalità dei sistemi meccanici per i quali era stata formulata, per cui si è cominciato a parlare di sistemi quasi-ergodici, che hanno la proprietà, più debole, di passare per stati arbitrariamente prossimi agli stati microscopici compatibili con l'energia totale.

Biliardo bidimensionale[modifica | modifica wikitesto]

Un modello semplice per visualizzare l'ipotesi ergodica è costituito dal biliardo bidimensionale. Esso è un sistema dinamico in cui si considera il moto di una palla con velocità assegnata in una certa porzione del piano euclideo, che rimbalza elasticamente sul bordo di questa porzione. Secondo l'ipotesi ergodica la palla dovrebbe passare per ogni posizione possibile sulla porzione di piano assegnata. Questo modello è particolarmente semplice sia perché il moto avviene nel piano, sia perché la conservazione dell'energia è limitata alle considerazioni sulla sola energia cinetica.

Tuttavia anche nel caso di porzioni molto semplici, come il biliardo triangolare, le dimostrazioni di proprietà ergodiche non sono banali e richiedono un formalismo matematico piuttosto sviluppato.

Note[modifica | modifica wikitesto]

  1. ^ (IT) ergòdico in Vocabolario - Treccani, su www.treccani.it. URL consultato il 15 novembre 2017.

Bibliografia[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Fisica Portale Fisica: accedi alle voci di Wikipedia che trattano di fisica