Scattering di Mie

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento da Teoria di Mie)
Vai alla navigazione Vai alla ricerca

Lo scattering di Mie, noto anche come scattering di Lorenz-Mie, è una soluzione completa e matematicamente rigorosa del problema dello scattering di un'onda elettromagnetica su di una sfera o su di un cilindro. La teoria che descrive questo tipo di scattering prende il nome dal fisico tedesco Gustav Mie che nel 1908 pubblicò per primo la soluzione completa[1]. Oltre a Mie, anche altri ricercatori pubblicarono quasi contemporaneamente ulteriori sviluppi e diverse, equivalenti formulazioni: principalmente vanno ricordati i contributi di Peter Debye e Ludvig Lorenz.

Lo scattering di Mie è valido per centri diffusori di ogni dimensione e, nel limite in cui questi siano molto più piccoli della lunghezza d'onda incidente, si riottiene lo Scattering di Rayleigh (che è valido solo per diffusori puntiformi). Per questo motivo lo scattering di Mie trova applicazione sia nello studio ottico dei colloidi sia in meteorologia; infatti le gocce d'acqua che compongono le nubi hanno spesso dimensioni maggiori (o anche molto maggiori) della lunghezza d'onda della luce visibile.

L'equazione vettoriale e l'equazione scalare[modifica | modifica wikitesto]

Lo scattering di Mie è un problema vettoriale, ovvero implica l'uso di tutte le componenti dei campi elettrici (E) e magnetici (H) al fine di tener debitamente conto delle proprietà di polarizzazione della radiazione. In un mezzo di propagazione quale è, ad esempio, l'aria o il "vuoto", dielettrico, trasparente, omogeneo e isotropo, non dissipativo e non dispersivo, in cui sono presenti delle sferette, ossia dei centri diffusori, l'onda incidente, che può essere pensata nella forma di una onda piana, è costituita da campi elettrici e magnetici che soddisfano la seguente equazione delle onde

dove k è il vettore d'onda e n l'indice di rifrazione. Se definiamo il vettore , dove è un'arbitraria funzione scalare e r un vettore di posizione (nel nostro caso indica la coordinata radiale), è possibile dimostrare che questo soddisfa l'equazione

ovvero che M soddisfa l'equazione d'onda vettoriale non appena ovvero quando soddisfa l'equazione d'onda scalare. Della stessa proprietà gode il vettore N che possiamo definire tramite .

Risolvendo l'equazione delle onde scalare con le opportune condizioni al contorno, è quindi possibile ricavare due campi che soddisfano le equazioni d'onda vettoriali. In particolare, chiamando u e v due soluzioni indipendenti dell'equazione scalare che danno luogo ai campi Mu, Nu, Mv, Nv, si possono identificare i campi elettrico e magnetico tramite

.

dove "i" indica l'unità immaginaria.

È quindi possibile ottenere il campo elettrico e magnetico in funzione dei campi ausiliari introdotti prima quali opportune soluzioni dell'equazione delle onde scalare.

Le soluzioni dell'equazione d'onda e le condizioni al contorno[modifica | modifica wikitesto]

Dato che il sistema ha simmetria sferica, conviene risolvere il problema in coordinate sferiche. Sfruttando il fatto che le onde sferiche costituiscono un insieme di funzioni completo e ortonormale, ossia che qualsiasi altra funzione può essere sviluppata come somma di onde sferiche, l'idea di base alla teoria di Mie è di riscrivere l'onda piana incidente come sovrapposizione di onde sferiche (tramite uno sviluppo in serie) dentro e fuori la sfera e imporre le condizioni al contorno sulla superficie per ottenere i coefficienti dello sviluppo.

In particolare possiamo scrivere che all'interno della sfera

e

dove sono le funzioni associate di Legendre e sono le funzioni di Bessel sferiche di prima specie.

In coordinate sferiche l'equazione d'onda è fattorizzabile e ha soluzioni del tipo

e

dove n e l sono dei numeri interi, sono polinomi associati di Legendre e sono le funzioni di Bessel sferiche.

Imponendo le condizioni al contorno sulla superficie della sfera e introducendo il parametro si ottengono i coefficienti di scattering:

dove e sono le funzioni di Riccati-Bessel.

La sezione d'urto totale che si ottiene è:

.

Note[modifica | modifica wikitesto]

  1. ^ G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, vol. 330, p. 377, 1908.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Controllo di autoritàGND (DE4365811-8