Notazione di Einstein: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Riga 30: Riga 30:
=== Prodotto vettoriale ===
=== Prodotto vettoriale ===
Il [[prodotto vettoriale]] di due vettori <math>u</math> e <math>v</math> in <math>\R^3</math> è definito come
Il [[prodotto vettoriale]] di due vettori <math>u</math> e <math>v</math> in <math>\R^3</math> è definito come
:<math>(u\times v)_i = \varepsilon_{ijk} u_j v_k\,\! </math>
:<math>(u\times v)_i = \varepsilon_{ijk} u^j v^k\,\! </math>
Nell'espressione è sottintesa una somma sugli indici <math>j</math> e <math>k</math> poiché entrambi compaiono due volte nel termine di destra. Il simbolo <math>\varepsilon_{ijk}</math> dipendente da 3 indici è il [[simbolo di Levi-Civita]]. L'espressione però ''non'' è sommata sull'indice <math>i</math>, perché questo compare una volta sola in ogni termine. L'espressione infatti esprime per ogni <math>i</math> l'<math>i</math>-esima componente del prodotto vettoriale fra <math>u</math> e <math>v</math>.
Nell'espressione è sottintesa una somma sugli indici <math>j</math> e <math>k</math> poiché entrambi compaiono due volte in posizioni opposte nel termine di destra. Il simbolo <math>\varepsilon_{ijk}</math> dipendente da 3 indici è il [[simbolo di Levi-Civita]]. L'espressione però ''non'' è sommata sull'indice <math>i</math>, perché questo compare una volta sola in ogni termine. L'espressione infatti esprime per ogni <math>i</math> l'<math>i</math>-esima componente del prodotto vettoriale fra <math>u</math> e <math>v</math>.


Indicando con
Indicando con
:<math> \mathbf e_1, \mathbf e_2, \mathbf e_3 </math>
:<math> \mathbf e_1, \mathbf e_2, \mathbf e_3 </math>
la [[base canonica]] di <math>\R^3</math>, è possibile scrivere il prodotto vettoriale in un'unica equazione del tipo
la [[base canonica]] di <math>\R^3</math>, è possibile scrivere il prodotto vettoriale in un'unica equazione del tipo
:<math>u\times v = \varepsilon_{ijk} u_j v_k \mathbf e_i.</math>
:<math>u\times v = \varepsilon_{ijk} u^j v^k \mathbf e^i.</math>
Qui la somma è effettuata su tutti gli indici <math>i,j,k</math>. In altre parole,
Qui la somma è effettuata su tutti gli indici <math>i,j,k</math>. In altre parole,
:<math>u\times v = \sum_{i = 1}^3 \sum_{j = 1}^3 \sum_{k = 1}^3 \varepsilon_{ijk} u_j v_k \mathbf e_i.</math>
:<math>u\times v = \sum_{i = 1}^3 \sum_{j = 1}^3 \sum_{k = 1}^3 \varepsilon_{ijk} u_j v_k \mathbf e_i.</math>

Versione delle 12:17, 28 dic 2012

File:Albert Einstein portrait.jpg
Nel libro "La teoria della relatività" Albert Einstein introduce una notazione che rende le formule della relatività generale più concise.

In algebra lineare la notazione di Einstein o la convenzione di Einstein nelle sommatorie è una convenzione per contrarre i tensori: ogni indice che compare all'interno di un fattore più di una volta viene sommato al variare di tutti i possibili valori che l'indice può assumere.

Nelle applicazioni più comuni l'indice può valere 1,2,3 (per calcoli nello spazio euclideo), o 0,1,2,3 o 1,2,3,4 (per calcoli nello spazio di Minkowski), ma esso può variare in qualsiasi intervallo, compresi insiemi infiniti. La notazione astratta degli indici è uno sviluppo della notazione di Einstein.

La convenzione è stata introdotta dallo stesso Albert Einstein per rendere più concise alcune equazioni di geometria differenziale utili a formulare la relatività generale. La convenzione non ha tuttavia alcun significato fisico; si tratta di un metodo di scrittura utile nel formalismo matematico.

Definizione

Nell'articolo del 1916 "La fondazione della teoria della relatività generale" (Die Grundlage der allgemeinen Relativitätstheorie)[1], dopo alcuni paragrafi di introduzione, Einstein dedica il punto B della sezione 4 ai "Mezzi matematici per la formulazione di equazioni covarianti in modo generale". A valle della definizione di quadrivettore covariante e controvariante, dedica una nota alla "Osservazione sulla scrittura semplificata delle espressioni". Dunque, fu lui stesso a usare la dizione di "notazione semplificata", da applicare ai tensori precedentemente introdotti. A proposito scrive:

«Un'occhiata alle equazioni del presente paragrafo mostra che le sommatorie si effettuano sempre rispetto agli indici che si presentano due volte sotto il segno di somma e unicamente rispetto a indici siffatti. Perciò, è possibile, senza ledere la chiarezza, sopprimere il segno . A tale scopo diamo la seguente regola: " quando un indice si presenta due volte in un termine d'una espressione, occorre sommare rispetto ad esso, salvo il caso che sia esplicitamente indicato il contrario".[...]. Seguendo l'uso introdotto da Levi-Civita, indichiamo il carattere covariante collocando l'indice in basso e quello controvariante collocando l'indice in alto

La convenzione è quindi la seguente:

Quando un indice si presenta due volte in un termine di una espressione, una volta in basso ed una volta in alto, occorre sommare rispetto ad esso, salvo il caso che sia esplicitamente indicato il contrario.

Esempi

Generalmente la convenzione di Einstein è usata in presenza di tensori. Gli esempi qui proposti sono tutti tensori.

Prodotto scalare

Il prodotto scalare di due vettori e dello spazio euclideo è definito come

Usando la convenzione di Einstein, si può sottintendere il simbolo di sommatoria. L'espressione può essere scritta come

Infatti il termine contiene due volte l'indice , una volta come covariante ed una volta come controvariante, la sommatoria sui valori di può essere sottintesa.

Prodotto vettoriale

Il prodotto vettoriale di due vettori e in è definito come

Nell'espressione è sottintesa una somma sugli indici e poiché entrambi compaiono due volte in posizioni opposte nel termine di destra. Il simbolo dipendente da 3 indici è il simbolo di Levi-Civita. L'espressione però non è sommata sull'indice , perché questo compare una volta sola in ogni termine. L'espressione infatti esprime per ogni l'-esima componente del prodotto vettoriale fra e .

Indicando con

la base canonica di , è possibile scrivere il prodotto vettoriale in un'unica equazione del tipo

Qui la somma è effettuata su tutti gli indici . In altre parole,

Errore del parser (SVG (MathML può essere abilitato tramite plug-in del browser): risposta non valida ("Math extension cannot connect to Restbase.") dal server "http://localhost:6011/it.wikipedia.org/v1/":): {\displaystyle u\times v = \sum_{i = 1}^3 \sum_{j = 1}^3 \sum_{k = 1}^3 \varepsilon_{ijk} u_j v_k \mathbf e_i.}

Indici muti e liberi

In una espressione scritta secondo la convenzione di Einstein, gli indici che vanno sommati si chiamano muti e gli altri sono liberi. Ad esempio, nell'espressione

gli indici e sono muti e l'indice è libero. Poiché gli indici e devono essere sommati su alcuni valori predeterminati, hanno un ruolo tutto interno all'espressione che non si "manifesta" all'esterno: in particolare, è possibile cambiare lettera per indicare gli indici muti a piacimento. Ad esempio, i due indici muti possono essere scambiati senza variare il significato dell'espressione:

Notazione astratta degli indici

La notazione di Einstein presenta l'inconveniente di non specificare se le relazioni tra le grandezze che compaiono nelle equazioni (in particolar modo i tensori) valgano componente per componente o se siano equazioni tensoriali, indipendenti dalla scelta di una base. Per questo motivo Roger Penrose e altri[2] hanno proposto l'introduzione di una differenziazione della notazione da usarsi nella notazione di Einsten:

  • Equazioni che contengano indici indicati da lettere latine, del tipo
    sono da considerarsi relazioni tra tensori e non è necessaria la scelta di una base di coordinate
  • Equazioni che contengano indici indicati da lettere greche, del tipo
    sono da considerarsi relazioni tra le componenti dei tensori e quindi è necessaria la scelta di una base di coordinate.

La notazione astratta degli indici (abstract index notation) distingue queste due situazioni; pertanto

indicano veri e propri tensori di tipo (3, 2) e , mentre

indica un numero, componente del tensore dipendente dai numeri e .

Questa notazione si scontra parzialmente con un uso precedente in presenza di uno spaziotempo a 4 dimensioni[2], tuttavia ancora diffuso[3], secondo il quale si usano le lettere greche quando si vuole indicare che la sommatoria deve essere svolta su tutti gli indici (spaziali e temporali), si usano le lettere latine quando la sommatoria e ristretta alle sole componenti spaziali Per esempio,

dove abbiamo usato la metrica

e , invece

La parte spaziale (vettore 3 dimensionale) del quadrivettore è indicata da e

è la norma quadra di .

Voci correlate

Note

  1. ^ Die Grundlage der allgemeinen Relativitätstheorie, Articolo originale della teoria della relatività generale (tedesco), pdf
  2. ^ a b in (EN) Robert M. Wald, General Relativity, 1a edizione, University of Chicago Press, 1984, ISBN 0226870332. si riportano due lavori Penrose (1968) e Penrose e Rindler (1984) a proposito dell'introduzione della notazione astratta degli indici.
  3. ^ Gian Maria Prosperi, Elementi di teoria della relatività ristretta, Cusl, 2004, ISBN 8881325055.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica