Skylake

Da Wikipedia, l'enciclopedia libera.

Skylake è il nome in codice dell'architettura x86 di dodicesima generazione sviluppata da Intel per i propri microprocessori, e prevista al debutto nel 2015, andando a succedere all'architettura di undicesima generazione Haswell, anzi della sua evoluzione a 14 nm Broadwell che servirà ad Intel per sperimentare il nuovo processo produttivo.[1]

Caratteristiche tecniche[modifica | modifica sorgente]

Le informazioni relative alle innovazioni di tale architettura sono ancora molto scarse, ma presumibilmente si andrà sempre di più nella direzione del contenimento dei consumi grazie ad una maggiore efficienza e alla concentrazione di diversi sotto-sistemi all'interno della sola CPU, realizzando quindi molto probabilmente un System on a Chip (SoC).[2][3]

A aprile 2012 è stato annunciato che le versioni per il settore server di fascia più alta, basate sulla precedente architettura Haswell, e in particolare conosciute come Haswell-EX, che verranno presentate nel 2014 introdurranno il supporto per le memorie RAM DDR4. Tale supporto in questa prima incarnazione però sarà dedicato esclusivamente al settore server, mentre l'introduzione della nuova tecnologia per tutti i settori di mercato dovrebbe avvenire proprio con l'architettura Skylake.[4].

Pare che con questa architettura Intel raggiungerà un risultato che l'azienda si è posta da lungo tempo, vale a dire la possibilità di far funzionare la CPU e il comparto grafico integrato in maniera "cooperativa", sfruttando quindi in maniera dinamica le potenzialità di entrambi i sotto-sistemi per ottimizzare i calcoli. Si tratterebbe quindi della prima architettura "ibrida" per una CPU Intel.[3]

Considerazioni sull'abbinamento "Processo produttivo/Architettura" di Intel[modifica | modifica sorgente]

A partire dall'introduzione dell'architettura Core, successiva alla NetBurst e avvenuta a metà 2006, Intel ha dichiarato l'intenzione di presentare una nuova architettura ogni 2 anni, in modo da poter tenere il passo con la famosa Legge di Moore. Per aumentare le prestazioni di una CPU mantenendone sotto controllo anche il consumo energetico è necessario non solo ottimizzarne l'architettura, ma anche realizzare i nuovi dispositivi con processi produttivi sempre più raffinati.

Per limitare gli imprevisti delle innovazioni tecnologiche necessarie al rinnovamento generazionale dei propri processori, a partire dagli inizi del 2006 Intel ha iniziato a seguire una strategia denominata "Tick-Tock": prima viene introdotta una nuova tecnologia produttiva sulla base di un'architettura già collaudata (la fase "Tick") e in seguito, quando tale tecnologia è in grado di fornire rese elevate, la si adotta per produrre una nuova architettura (la fase "Tock").

I primi esponenti di questa nuova filosofia di progetto, furono i processori Pentium D Presler (che avevano praticamente la stessa architettura dei precedenti Smithfield) con cui venne introdotto il processo produttivo a 65 nm (fase "Tick"). Dopo aver collaudato la nuova tecnologia costruttiva con queste CPU, Intel passò alla nuova architettura Core dei Core 2 Duo, prodotta sempre a 65 nm (fase "Tock").

In maniera analoga, tra la fine del 2007 e l'inizio del 2008, Intel presentò i processori Penryn e Wolfdale che erano in sostanza dei die-shrink del Core 2 Duo, a 45 nm (fase "Tick"). A fine 2008, quando anche questo processo produttivo era ormai a punto, arrivò l'architettura Nehalem (fase "Tock"). La sua evoluzione Westmere è stata realizzata a 32 nm a partire dai primi mesi del 2010 (fase "Tick"), in modo da collaudare anche questa tecnologia in vista dell'architettura successiva Sandy Bridge, uscita poi nel 2011 (fase "Tock"). L'intenzione dichiarata di Intel, molto ambiziosa, era quella di migliorare il rapporto performance/watt del 300% entro la fine del decennio.

Seguendo il medesimo principio, Sandy Bridge è stata poi seguita dal die-shrink a 22 nm Ivy Bridge nel 2012 (fase "Tick"), che ha quindi mantenuto la stessa architettura ma ha introdotto un nuovo processo produttivo. Nel 2013 è arrivata anche la nuova architettura Haswell (fase "Tock"), il cui die-shrink a 14 nm prenderà il nome di Broadwell (fase "Tick"); quest'ultimo verrà poi seguito negli anni seguenti dall'architettura Skylake (fase "Tock") e dalla sua ri-scalatura Skymont (fase "Tick").

Questa metodologia di sviluppo, nelle intenzioni di Intel, minimizza i rischi propri dell'adozione di una nuova tecnologia produttiva con un'architettura a sua volta completamente nuova, consentendo ai progettisti di concentrarsi, ad anni alterni, sulla risoluzione di una sola classe di problemi.

Exquisite-kfind.png Per approfondire, vedi Intel Tick-Tock.

Il successore[modifica | modifica sorgente]

Non si ancora praticamente nulla riguardo ai progetti che succederanno a Skylake. Auspicabilmente, continuando l'approccio "Tick-Tock" (descritto poco sopra) per l'innovazione delle CPU Intel, introdotto nel 2006 con l'architettura "Core" e che è proseguito poi con l'architettura Nehalem nel 2008, con Sandy Bridge nel 2010, con Haswell nel 2013, e poi con Skylake stessa nel 2015 è previsto che la futura evoluzione possa essere sviluppata sul processo produttivo a 12 nm che dovrebbe essere sviluppato attraverso le ultime evoluzioni di Skylake che probabilmente prenderanno il nome di Skymont.

Il nome dell'architettura di tredicesima generazione che andrà a sostituire Skylake però, non è stato ancora menzionato, sebbene il suo arrivo dovrebbe essere fissato nel 2017.

Note[modifica | modifica sorgente]

  1. ^ Intel Presentation: 22nm Details
  2. ^ Intel could kill performance PC graphics in 2015
  3. ^ a b The Future of Intel CPU Architectures Revealed: Haswell, Skylake
  4. ^ Intel Haswell-EX con supporto alla memoria DDR4 nel 2014

Voci correlate[modifica | modifica sorgente]

informatica Portale Informatica: accedi alle voci di Wikipedia che trattano di informatica