Radice dell'unità

Da Wikipedia, l'enciclopedia libera.

In matematica, le radici -esime dell'unità sono tutti i numeri (reali o complessi) la cui -esima potenza è pari a , ovvero le soluzioni dell'equazione:

Le radici[modifica | modifica wikitesto]

Nel campo complesso per ogni intero positivo esistono esattamente radici -esime dell'unità e sono nella forma

Radici terze dell'unità, disposte ai vertici di un triangolo

dove l'ultima uguaglianza viene dalla formula di Eulero, con intero, .

Esse si dispongono nel piano complesso lungo la circonferenza unitaria, ai vertici di un poligono regolare con lati che ha un vertice in .

Tra queste radici le uniche reali sono r0 = 1 e, se (cioè è pari) rk = -1.

Per ogni l'insieme delle radici -esime dell'unità, con l'operazione data dalla moltiplicazione usuale sui complessi, forma un gruppo ciclico.

Si dicono radici primitive -esime dell'unità tutte quelle radici che generano il gruppo delle radici -esime dell'unità. È facile provare che le radici primitive -esime dell'unità sono quelle radici -esime dell'unità tali che:

.

Il numero di radici primitive ennesime dell'unità è pari al numero di interi minori di e coprimi con . Qui è la funzione di Eulero.

Radici di un numero complesso qualsiasi[modifica | modifica wikitesto]

Le radici -esime di un numero complesso possono essere descritte in modo più agevole rappresentando il numero complesso in forma polare

Se è diverso da zero, le radici -esime di sono effettivamente radici distinte. Una di queste è la seguente

Infatti

Più in generale, le radici di si ottengono moltiplicando con le radici dell'unità. Quindi

Queste radici formano sempre i vertici di un poligono regolare di lati centrato nell'origine. Il raggio del poligono è .

Esempi[modifica | modifica wikitesto]

Le radici quarte di un numero reale positivo sono ottenute moltiplicando la radice quarta reale di per le quattro radici dell'unità. Le quattro radici quarte di sono quindi:

Le radici -esime di -1 formano nel piano complesso un poligono regolare di lati, centrato nell'origine: lo si può ottenere ruotando di in senso antiorario il poligono formato dalle radici -esime dell'unità. Il numero è vertice del poligono quando è dispari.

Alcune radici di 1[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica