Pyrococcus furiosus

Da Wikipedia, l'enciclopedia libera.
Progetto:Forme di vita/Come leggere il tassoboxCome leggere il tassobox
Pyrococcus furiosus
Pyrococcus furiosus.png
Disegno rappresentante una fotografia al microscopio a scansione elettronica di Pyrococcus furiosus
Classificazione scientifica
Dominio Prokaryota
Regno Archaea
Phylum Euryarchaeota
Classe Thermococci
Ordine Thermococcales
Famiglia Thermococcaceae
Genere Pyrococcus
Specie P. furiosus
Nomenclatura binomiale
Pyrococcus furiosus
Erauso et al, 1993
Distanza filogenetica dell'enzima IMP deidrogenasi tra procarioti ed eucarioti

Pyrococcus furiosus Erauso et al, 1993 è una specie estremofila appartenente al dominio degli Archea e deve il suo nome al fatto che è in grado di crescere a temperature superiori ai 100 °C. Isolato per la prima volta nel 1986 sull'isola di Vulcano, è uno dei pochi organismi esistenti di cui si sia verificato il possesso di enzimi contenenti tungsteno, un elemento estremamente raro nelle molecole biologiche.

Il termine Pirococco significa letteralmente, in greco, palla di fuoco a causa della sua forma rotondeggiante e della sua capacità di crescere a temperature molto elevate. Il termine latino furiosus (furioso, veloce) si riferisce invece alla sua eccezionale velocità di duplicazione.[1]

Struttura e metabolismo[modifica | modifica wikitesto]

Gli organismi di questa specie sono cocciformi (con un diametro tra gli 0,8 e i 2 µm) e possiedono una serie di flagelli apicali. Essi sono racchiusi in un cosiddetto "Surface Layer" che forma uno spazio periplasmatico attorno alla membrana citoplasmatica.[2]

Questo organismo cresce bene su estratto di lievito, maltosio, cellobiosio e amido e su sorgenti proteiche quali triptone, peptone, caseina ed estratti di carne. Al contrario, la sua crescita è molto rallentata (quasi inesistente) su carboidrati semplici quali glucosio, lattosio e galattosio nonché su acidi organici, alcoli e amminoacidi semplici. L'abilità di questo microrganismo di crescere su polisaccaridi e non su zuccheri semplici suggerisce che solo questi polimeri possano essere importati nella cellula e solo in seguito vengano idrolizzati a glucosio. È possibile infatti che molecole complesse aiutino il pirococco a mantenere una pressione osmotica interna non eccessiva.[2]

Ecologia[modifica | modifica wikitesto]

Il Pyrococcus furiosus è un organismo anaerobio rintracciabile in ambienti molto caldi come nelle vicinanze di sorgenti termali ricche di zolfo, dove le temperature raggiungono, e spesso superano, i 90 gradi; ambiente molto diffuso circa 3 miliardi di anni fa, quando si pensa sia nato.[3]

Il suo optimum di temperatura è circa di 100 °C (per la precisione vive e si riproduce a 121 °C), mentre è in grado di sopravvivere in un ambito di pH tra 5 e 9 (con un optimum di 7). In condizioni di crescita ottimali, questo organismo è in grado di duplicarsi in circa 37 minuti, che è il tempo più breve tra gli Archaea finora conosciuti.[4][5]

Scoperta[modifica | modifica wikitesto]

Il Pyrococcus furiosus fu isolato per la prima volta nel 1986 tra i sedimenti nei pressi di sorgenti geotermiche nei pressi della spiaggia di Porto Levante nell'isola di Vulcano.[6] Fu descritto per la prima volta da Karl Stetter, scienziato dell'università di Ratisbona in Germania.[1][7]

Proprietà[modifica | modifica wikitesto]

Il P. furiosus riesce a mantenere l'integrità del suo cromosoma con temperature al di sopra dei 100 °C con un accumulo molto più basso di rotture del DNA come invece avverrebbe normalmente. La sua costituzione lo rende anche resistente a radiazioni ionizzanti, rendendolo capace di resistere a dosi fino a 1,5 kGy.[1][8]

Poiché tale organismo è adattato a vivere in queste condizioni proibitive, esso possiede una serie di enzimi termostabili perché ricchi dell'aminoacido cisteina e di ponti disolfuro.[9] Per questa ragione una forma adattata della sua DNA polimerasi, nota come Pfu polimerasi viene spesso utilizzata nella reazione a catena della polimerasi.[10]

Il genoma del P. furiosus, lungo circa 1908256 basi, è stato completamente sequenziato (completato nel 2001) presso l'Istituto Biotecnologico dell'Università del Maryland. Gli scienziati del team hanno calcolato che tale DNA codifica all'incirca per 2065 proteine [1] tra cui molti enzimi coinvolti nel ciclo metabolico di tali organismi, il che li rende in grado di sopravvivere in una serie di condizioni ambientali diverse poiché riescono a trasportare e soprattutto a metabolizzare molti composti organici diversi.[10]

Ricercatori della University of Georgia, negli Stati Uniti, hanno pubblicato una ricerca[11] che prevede l'utilizzo del batterio, in una forma mutata per produrre carburante partendo dall'anidride carbonica atmosferica.[12][13] Il vantaggio e novità della ricerca è rappresentato dall'utilizzo di questo batterio estremofilo che è in grado di sopportare facilmente le temperature di esercizio dei processi industriali a differenza dei lieviti e altri batteri fin qui studiati.[14] Inoltre, una ricerca dell'Università di Wageningen ha riscontrato la capacita del batterio di produrre il 2-pentanolo un importante biocombustibile che rappresenta un'alternativa al petrolio, usato, anche, come solvente per i rivestimenti di CD e DVD.[15]

Note[modifica | modifica wikitesto]

  1. ^ a b c Roger A. Garrett e Hans-Peter Klenk, Archaea: Evolution, Physiology, and Molecular Biology, John Wiley & Sons, 12 maggio 2008, pp. 239–, ISBN 978-1-4051-7148-9. URL consultato il 13 maggio 2013.
  2. ^ a b Koki Horikoshi, Extremophiles Handbook: ..., Springer, 2011, pp. 541–, ISBN 978-4-431-53897-4. URL consultato il 13 maggio 2013.
  3. ^ DLC-ME | The Microbe Zoo | Space Adventure | Space Adventure | Martian Baacillus?.
  4. ^ M. Kates, D.J. Kushner e A.T. Matheson, The Biochemistry of Archaea (Archaebacteria), Elsevier, 13 dicembre 1993, pp. 162–, ISBN 978-0-08-086086-2. URL consultato il 13 maggio 2013.
  5. ^ http://www.hanskrause.de/HKHPI/hkhpi_02_04.htm. URL consultato il 14 maggio 2013.
  6. ^ Biokingdoms - Kingdom- Archaebacteria. URL consultato il 14 maggio 2013.
  7. ^ http://web.mst.edu/~microbio/BIO221_2010/P_furiosus.html. URL consultato il 13 maggio 2013.
  8. ^ Biology6Kingdoms - Pyrococcus furiosus. URL consultato il 13 maggio 2013.
  9. ^ Eric V. Wong, Cells: Molecules and Mechanisms, Axolotl Academic Publishing, pp. 19–, ISBN 978-0-9852261-1-4. URL consultato il 14 maggio 2013.
  10. ^ a b H. Yuan, XP. Liu; Z. Han; T. Allers; JL. Hou; JH. Liu, RecJ-like protein from Pyrococcus furiosus has 3'-5' exonuclease activity on RNA: implications for proofreading of 3'-mismatched RNA primers in DNA replication. in Nucleic Acids Res, aprile 2013, DOI:10.1093/nar/gkt275, PMID 23605041.
  11. ^ UGA discovery may allow scientists to make fuel from CO2 in the atmosphere. URL consultato il 14 maggio 2013.
  12. ^ Carburante dall'anidride carbonica? Sì può. Grazie ad un microrganismo - Repubblica.it. URL consultato il 14 maggio 2013.
  13. ^ Pyrococcus furiosus: il microrganismo che trasforma la CO2 in carburante. Funzionerà?. URL consultato il 14 maggio 2013.
  14. ^ Batteri 'estremi' candidati a fabbriche di biocarburanti - Energia - Scienza&Tecnica - ANSA.it. URL consultato il 14 maggio 2013.
  15. ^ CORDIS: Mercato della Tecnologia: Offerte. URL consultato il 14 maggio 2013.

Bibliografia[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

microbiologia Portale Microbiologia: accedi alle voci di Wikipedia che trattano di microbiologia