Pianeta terrestre

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Template:Avvisounicode

I quattro pianeti rocciosi del Sistema solare in un fotomontaggio che ne rispetta le proporzioni dei diametri ma non delle distanze. Da sinistra a destra: Mercurio, Venere, la Terra e Marte.

Un pianeta terrestre (detto anche pianeta roccioso o pianeta tellurico) è un pianeta composto per lo più di roccia e metalli.[1] Il termine deriva direttamente dal nome del nostro pianeta, Terra, ed è stato adottato per indicare i pianeti del sistema solare interno in contrapposizione ai pianeti del sistema solare esterno detti giganti gassosi, che invece sono pianeti privi di una superficie solida, composti da una combinazione di idrogeno, elio e acqua in varie combinazioni di gas e liquido.

Struttura

La struttura interna dei pianeti terrestri e della Luna.

I pianeti terrestri hanno sempre la stessa struttura generale: un nucleo centrale metallico, per la maggior parte di ferro, con un mantello di silicati, e possibilmente una crosta.[2] La Luna è simile, ma non è certo che abbia un nucleo ferroso. Sulla superficie dei pianeti terrestri è possibile individuare strutture comuni come canyon, crateri, montagne e vulcani. Infine, i pianeti terrestri posseggono atmosfere secondarie[3] - atmosfere che sono originate da gas liberati per effetto del vulcanismo interno o in seguito ad impatti con corpi cometari[4] - in opposizione ai giganti gassosi, che posseggono atmosfere primarie - atmosfere catturate direttamente dalla nebulosa solare originaria.[5]

Teoricamente, sono previste due tipologie di pianeti terrestri, una dominata dai composti del silicio e l'altra dai composti del carbonio. I pianeti del Sistema solare appartengono tutti alla prima classe e solo alcuni asteroidi, le condriti carbonacee, sono caratterizzati da una composizione che li accomuna alla seconda categoria.[6] Secondo quanto ipotizzato da Marc Kuchner e colleghi, i pianeti di carbonio potrebbero formarsi in un disco protoplanetario ricco di tale elemento o povero di ossigeno.[6] Attorno ad un nucleo di ferro, si formerebbe un mantello di carburi e probabilmente grafite, entro cui, qualora le condizioni di pressione fossero rispettate, potrebbe formarsi uno strato ricco di diamanti.[7] Il pianeta potrebbe essere circondato da un'atmosfera secondaria, ricca di composti del carbonio.[8]

Pianeti terrestri del Sistema solare

Diagramma che mostra il rapporto tra la massa posseduta dai singoli pianeti terrestri e dalla Luna rispetto alla loro massa complessiva.

Il Sistema solare conta quattro pianeti terrestri: Mercurio, Venere, la Terra e Marte. È probabile che un tempo ne esistessero altri, ma la maggior parte sono stati espulsi dal Sistema tramite effetti fionda gravitazionali, o distrutti in seguito ad impatti. Si conosce un solo pianeta terrestre, la Terra, con un'idrosfera attiva.

I pianeti terrestri si trovano nella porzione interna del Sistema. Ciò non è un caso, infatti la maggiore temperatura, dovuta alla vicinanza del Sole, ha fatto sì che i componenti più leggeri delle loro atmosfere primitive (idrogeno ed elio) si disperdessero nello spazio, raggiungendo la velocità di fuga dal pianeta. La loro posizione determina inoltre temperature superficiali relativamente alte e moti di rivoluzione più veloci rispetto ai pianeti giganti del Sistema solare esterno, mentre quelli di rotazione sono più lenti.[1]

Sono inoltre accomunati dall'assenza o basso numero di satelliti naturali e da dimensioni relativamente piccole (meno di 15 000 chilometri di diametro).[1]

La Luna, Io ed Europa sono composte principalmente da roccia e sono considerati corpi di tipo terrestre,[9] sebbene non pianeti dal momento che non orbitano direttamente attorno al Sole. La radiazione emessa da Giove in formazione deve aver riscaldato una estesa porzione del disco circumgioviano, determinando una composizione prevalentemente rocciosa per le due lune, nonostante la loro formazione oltre il limite della neve (frost line) del Sistema solare.

Secondo alcuni astronomi anche Cerere è un significativo corpo di tipo terrestre,[10] sebbene non soddisfi le condizioni dinamiche perché possa essere considerato un pianeta. Altri, invece, guidati soprattutto dal valore della sua densità, suggeriscono che possa presentare maggiori affinità con alcuni satelliti dei giganti gassosi.[11][12][13] La missione Dawn della NASA che visiterà Cerere nel 2015 raccoglierà dati che permetteranno di fare luce anche su questo aspetto.

La maggior parte degli asteroidi ha una composizione simile a quella dei pianeti rocciosi, ma non presentano una forma sferica, né hanno subito un processo di differenziazione interna e non rientrano dunque nella lista dei corpi di tipo terrestre.

Infine, i corpi come Plutone, Ganimede e Titano (alcuni studiosi includono nella lista anche Europa,[14] considerato come un oggetto al limite tra le due categorie) presentano numerose caratteristiche che li accomunano ai pianeti terrestri, tra cui una superficie solida e una sottile atmosfera, ma sono composti principalmente da ghiacci di sostanze volatili e roccia[15][14] (come indicano i valori della densità, tipicamente compresi tra 1,5 e 2 g/cm3[9]) perché si sono formati oltre il limite della neve del Sistema solare. Nonostante la differente composizione e struttura interna, alcuni astronomi li considerano corpi di tipo terrestre,[5][16] altri hanno proposto classificazioni e designazioni alternative;[17][18] tra queste nana di ghiaccio, che non è stata accolta dall'Unione Astronomica Internazionale.

Andamento delle densità

I principali corpi non planetari di tipo roccioso del Sistema solare: la Luna, Io, Europa e Cerere. L'inserimento di Cerere nella lista è messo in discussione da alcuni studiosi.

Confrontando la densità del corpo "non compresso"[19] (o densità ridotta[9]) dei pianeti terrestri del Sistema solare, di Cerere e degli altri due più grandi asteroidi del Sistema, con il valore del semiasse maggiore dell'orbita, si osservano valori inferiori per la densità all'aumentare della distanza dal Sole.[20]

La principale eccezione a tale regola è rappresentata dalla densità della Luna, inferiore al valore atteso. Ciò è dovuto all'anomalo processo che ha condotto alla sua formazione.[20] Nella tabella sono riportati per completezza anche i dati relativi ad Io ed Europa. È ancora da verificare se questo andamento è valido anche per i pianeti extrasolari.

corpo celeste massa
(M)
raggio medio
(R)
densità media
(g/cm3)
densità ridotta[19]
(g/cm3)
semiasse maggiore
(UA)
Mercurio 0,053 0,3825 5,4 5,3 0,39
Venere 0,815 0,9488 5,2 4,4 - 3,95[9] 0,72
Terra 1 1 5,5 4,4 - 4,03[9] 1,0
Luna 0,012 0,2726 3,3 3,3 1,0
Marte 0,107 0,53226 3,9 3,8 - 3,71[9] 1,5
Vesta 4,5×10-5 0,0414 3,4 3,4 2,3
Pallade 3,6×10-5 0,0417 2,8 2,8 2,8
Cerere 1,59×10-4 0,076 2,1 2,1 2,8
Europa 0,008 0,2460 3,96 3,96[9] 5,2
Io 0,015 0,2845 3,55 3,55[9] 5,2

Pianeti terrestri extrasolari

Lo stesso argomento in dettaglio: Super Terra.

È per il momento estremamente difficile osservare pianeti terrestri in orbita attorno ad altre stelle, perché sono troppo piccoli e vicini alla loro stella. Tutti i pianeti extrasolari trovati sono in larga parte giganti gassosi, mentre quelli rocciosi rientrano nella definizione di "Super Terra", ben più grandi di un pianeta simile alla Terra propriamente detto. Sono però in fase di sviluppo numerosi nuovi telescopi che dovrebbero poter risolvere anche pianeti di tipo terrestre.

Note

  1. ^ a b c (EN) Bill Arnett, An Overview of the Solar System, in The Nine Planets, 1998. URL consultato il 30-09-2009.
  2. ^ James W. Head III, 1999.
  3. ^ (EN) Robert O. Pepin, On the Isotopic Composition of Primordial Xenon in Terrestrial Planet Atmospheres, in Space Science Reviews, vol. 92, 2000, pp. 371-395, DOI:10.1023/A:1005236405730. URL consultato il 30-09-2009.
  4. ^ (EN) Julio Angel Fernández, Comet contribution to the atmospheres of the terrestrial planets, in Comets: nature, dynamics, origin, and their cosmogonical relevance, Springer Science & Business, 2005, ISBN 978-1-4020-3490-9. URL consultato il 30-09-2009.
  5. ^ a b (EN) Michael Richmond, Terrestrial Bodies in the Solar System, su spiff.rit.edu. URL consultato il 30-09-2009.
  6. ^ a b (EN) Villard R., Maran, S.; Kuchner, M. J.; Seager, S., Extrasolar Planets may have Diamond Layers, su ciera.northwestern.edu, Aspen Center for Physics, Northwestern University, 2005. URL consultato il 01-10-2009.
  7. ^ Kuchner, M. J., Immagine della ipotetica struttura interna di un pianeta di carbonio, su ciera.northwestern.edu, Aspen Center for Physics, Northwestern University. URL consultato il 01-10-2009.
  8. ^ (EN) Marc J. Kuchner, Seager, S., Extrasolar Carbon Planets (PDF), arΧiv:astro-ph/0504214v2. URL consultato il 01-10-2009.
  9. ^ a b c d e f g h Robert C. Bless, pp. 605 e ss., 1996.
  10. ^ (EN) Peter Ulmschneider, Planet Formation. Terrestrial Planets, in Intelligent life in the universe: from common origins to the future of humanity, Springer, 2003. URL consultato il 30-09-2009.
  11. ^ (EN) Asteroid 1 Ceres, su planetary.org, The Planetary Society. URL consultato il 30-09-2009.
  12. ^ (EN) T.B. McCord, Sotin, C., Ceres: Evolution and current state, in Journal of Geophysical Research, E5, 2005, DOI:10.1029/2004JE002244. URL consultato il 30-09-2009.
  13. ^ (EN) P.C. Thomas, et al., Differentiation of the asteroid Ceres as revealed by its shape, in Nature, vol. 437, 2005, pp. 224-226, DOI:10.1038/nature03938. URL consultato il 30-09-2009.
  14. ^ a b (EN) David Gubbins, Herrero-Bervera, Emilio, Dynamos, Planetary and Satellite, in Encyclopedia of geomagnetism and paleomagnetism, Springer, 2007, ISBN 978-1-4020-3992-8. URL consultato il 30-09-2009.
  15. ^ (EN) Marc Kaufman, Astronomy, in Passing the LEAP 21 Grade 8 in Science, American Book Company, Inc.,, 2005, ISBN 978-1-59807-024-8. URL consultato il 30-09-2009.
  16. ^ (EN) Randal Jackson, An 'alien Earth' in Saturn's backyard, su planetquest.jpl.nasa.gov, Planet Quest, Jet Propulsion Laboratory, 25-06-2004. URL consultato il 30-09-2009.
  17. ^ (EN) Titan's Great Lakes, su astrobio.net, Astrobiology Magazine, 17-10-2007. URL consultato il 30-09-2009.
  18. ^ (EN) Leszek Czechowski, Planetology and classification of the solar system bodies, in Advances in Space Research, vol. 38, n. 9, 2006, pp. 2054-2059, DOI:10.1016/j.asr.2006.09.004.
  19. ^ a b La densità del corpo "non compresso" è ottenuta attraverso una correzione, che tiene conto della forza di gravità, del valore della densità del pianeta.
    (EN) Density, su zebu.uoregon.edu, The Electronic Universe Project. URL consultato il 29-09-2009.
  20. ^ a b (EN) Density of the Terrestrial Planets, su mc.maricopa.edu, Kevin Healy. URL consultato il 29-09-2009.

Bibliografia

Voci correlate

  Portale Astronomia: accedi alle voci di Wikipedia che trattano di astronomia e astrofisica