PCNA

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Con l'acronimo PCNA viene identificata l'antigene nucleare di proliferazione cellulare (in inglese Proliferating Cell Nuclear Antigen, da cui l'acronimo); PCNA è una proteina ad azione di fattore di processività per la DNA-polimerasi-δ, individuata nelle cellule eucariotiche. La struttura di tale proteina è in grado di assumere una peculiare conformazione la quale le consente di contattare il DNA (DNA clamp) e di promuovere l'azione della polimerasi durante la replicazione del DNA.

Struttura proteica della PCNA umana, tale struttura delimita un manicotto proteico in grado di scorrere sul DNA, PCNA si inserisce anche nel complesso di replicazione del DNA e serve come un fattore di processività della DNA polimerasi. Tale struttura si compone a seguito dell'assemblamento di un trimero proteico.
Pattern di espressione del gene PCNA

La proteina PCNA codificata dal gene PCNA si localizza nel nucleo delle cellule eucariotiche, fa parte dei cofattori della DNA polimerasi delta, la loro reciproca associazione aumenta la processività nella sintesi del filamento guida durante la replicazione del DNA. In risposta ad un danno al DNA questa proteina viene ubiquitinata e quindi coinvolta nella via di riparazione del DNA RAD6-dipendente. Il gene PCNA codifica per due varianti di trascrizione della proteina. Pseudogeni di PCNA sono stati individuati sul cromosoma 4 e sul cromosoma X[1].

Espressione di PCNA all'interno del nucleo durante la sintesi del DNA[modifica | modifica wikitesto]

PCNA è stata originariamente identificata come un antigene espresso nei nuclei delle cellule durante la fase di sintesi del DNA[2]. Parte della proteina è stata sequenziata e la sequenza è stata utilizzata per consentire l'isolamento di un clone a cDNA[3]. PCNA aiuta a mantenere la DNA polimerasi delta (Pol δ) ancorata al DNA. PCNA viene bloccato[4] al DNA attraverso l'azione del fattore di replicazione C (RFC)[5], il quale fa parte degli eteropentameri della classe AAA+ ATPasi dipendenti. L'espressione del gene PCNA è sotto il controllo del fattore di trascrizione E2F[6].

Ruolo di PCNA nella riparazione del DNA[modifica | modifica wikitesto]

La DNA polimerasi delta è coinvolta nella sintesi di filamenti di DNA danneggiati e quindi rimossi durante la riparazione del DNA, PCNA consentendo alla DNA polimerasi delta il contatto con il filamento danneggiato svolge un ruolo importante sia per la sintesi del DNA che per la sua riparazione[7][8].

PCNA interviene anche nella via di tolleranza danno al DNA denominata riparazione post-replicazione (post-replication repair o PRR)[9] In PRR, avvengono due sotto-percorsi:

  • Il percorso translesione, che viene svolto da DNA polimerasi specializzate in grado di integrare le basi del DNA danneggiato nei loro siti attivi (a differenza delle normali polimerasi replicative), e quindi evitare il danno.
  • Il superamento del danno tramite il reclutamento dei meccanismi di ricombinazione degli omologhi.

PCNA è fondamentale per l'attivazione di questi percorsi e per la scelta di quale percorso di riparazione viene utilizzato dalla cellula.
La proteina PCNA subisce modifiche post-traduzionali quali ubiquitinazione[10]: Se la lisina numero 164 del peptide viene mono-ubiquinata si avrà l'attivazione del meccanismo di riparazione translesione, Se invece si verifica una poli-ubiquitinazione che coinvolge la lisina 63[10], si attiverà il secondo percorso di riparazione. Inoltre, se la lisina-164 (ed in misura minore, la lisina-127) di PCNA vanno incontro al processo di sumolazione (piccole modificatore ubiquitino-simili, SUMO) viene inibito il secondo percorso di riparazione[10]. Questo effetto di inibizione nella riparazione si verifica perché la PCNA sumolata, recluta un DNA elicasi denominato Srs2[11], tale elicasi disturba l'azione della nucleoproteina RAD51 la quale è fondamentale per l'inizio della ricombinazione omologa[11].

Interazioni[modifica | modifica wikitesto]

PCNA può interagire con: Ku70,[12][13] MSH3,[12][14][15] Werner syndrome ATP-dependent helicase,[16][17] RFC2,[12][18][19] RFC3,[12][20] RFC1,[12][21][22][23][24] RFC4,[12][18] RFC5,[12][18][23] GADD45G,[25][26] CDC25C,[27] MUTYH,[28] Flap structure-specific endonuclease 1,[29][30][31][32][33][34][35] Cyclin O,[12][36] CHTF18,[12] Y box binding protein 1,[37] Cyclin D1,[38][39] Annexin A2,[12] MSH6,[12][14][15] DNMT1,[40][41][42] HDAC1,[43] KCTD13,[44] XRCC1,[45] Cyclin-dependent kinase 4,[39][46] Ku80,[12][13][47] HUS1,[48] GADD45A,[49][50][51][52][53] POLD2,[54] ING1,[55] POLH,[56] KIAA0101,[35] POLDIP2,[57] EP300,[58] MCL1,[59] POLD3,[12][60] Cyclin-dependent kinase inhibitor 1C,[61] POLL,[62][63][64] Ubiquitin C[65][66][67] and P21.[22][31][35][61][68][69][70][71]

Note[modifica | modifica wikitesto]

  1. ^ Entrez Gene: PCNA proliferating cell nuclear antigen, su ncbi.nlm.nih.gov.
  2. ^ Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M, PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables, in J. Clin. Pathol., vol. 45, n. 5, 1992, pp. 416–9, DOI:10.1136/jcp.45.5.416, PMID 1350788.
  3. ^ Matsumoto K, Moriuchi T, Koji T, Nakane PK, Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin, in Embo J., vol. 6, n. 3, 1987, pp. 637–42, PMID 2884104.
  4. ^ Bowman GD, O'Donnell M, Kuriyan J, Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex, in Nature, vol. 429, n. 6993, 2004, pp. 724–30, DOI:10.1038/nature02585, PMID 15201901.
  5. ^ Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J, Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen, in Proc. Natl. Acad. Sci. U.S.A., vol. 96, n. 5, 1999, pp. 1869–74, DOI:10.1073/pnas.96.5.1869, PMC 26703, PMID 10051561.
  6. ^ Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L, Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development, in Plant Cell, vol. 14, n. 12, 2002, pp. 3225–36, DOI:10.1105/tpc.006403, PMID 12468739.
  7. ^ Shivji KK, Kenny MK, Wood RD, Proliferating cell nuclear antigen is required for DNA excision repair, in Cell, vol. 69, n. 2, aprile 1992, pp. 367–74, PMID 1348971.
  8. ^ Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W, Nuclear dynamics of PCNA in DNA replication and repair, in Mol. Cell. Biol., vol. 25, n. 21, 2005, pp. 9350–9, DOI:10.1128/MCB.25.21.9350-9359.2005, PMID 16227586.
  9. ^ Lehmann AR, Fuchs RP, Gaps and forks in DNA replication: Rediscovering old models, in DNA Repair (Amst.), vol. 5, n. 12, dicembre 2006, pp. 1495–8, DOI:10.1016/j.dnarep.2006.07.002, PMID 16956796.
  10. ^ a b c Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, in Nature, vol. 419, n. 6903, settembre 2002, pp. 135–41, DOI:10.1038/nature00991, PMID 12226657.
  11. ^ a b Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S, SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase, in Nature, vol. 436, n. 7049, luglio 2005, pp. 428–33, DOI:10.1038/nature03665, PMID 15931174.
  12. ^ a b c d e f g h i j k l m Satoshi Ohta, Shiomi Yasushi, Sugimoto Katsunori, Obuse Chikashi, Tsurimoto Toshiki, A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein, in J. Biol. Chem., vol. 277, n. 43, United States, ottobre 2002, pp. 40362–7, DOI:10.1074/jbc.M206194200, ISSN 0021-9258 (WC · ACNP), PMID 12171929.
  13. ^ a b A S Balajee, Geard C R, Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells, in Nucleic Acids Res., vol. 29, n. 6, England, marzo 2001, pp. 1341–51, DOI:10.1093/nar/29.6.1341, PMC 29758, PMID 11239001.
  14. ^ a b H E Kleczkowska, Marra G, Lettieri T, Jiricny J, hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci, in Genes Dev., vol. 15, n. 6, United States, marzo 2001, pp. 724–36, DOI:10.1101/gad.191201, ISSN 0890-9369 (WC · ACNP), PMC 312660, PMID 11274057.
  15. ^ a b A B Clark, Valle F, Drotschmann K, Gary R K, Kunkel T A, Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes, in J. Biol. Chem., vol. 275, n. 47, UNITED STATES, novembre 2000, pp. 36498–501, DOI:10.1074/jbc.C000513200, ISSN 0021-9258 (WC · ACNP), PMID 11005803.
  16. ^ Ana M Rodríguez-López, Jackson Dean A, Nehlin Jan O, Iborra Francisco, Warren Anna V, Cox Lynne S, Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA, in Mech. Ageing Dev., vol. 124, n. 2, Ireland, febbraio 2003, pp. 167–74, DOI:10.1016/S0047-6374(02)00131-8, ISSN 0047-6374 (WC · ACNP), PMID 12633936.
  17. ^ S Huang, Beresten S, Li B, Oshima J, Ellis N A, Campisi J, Characterization of the human and mouse WRN 3'-->5' exonuclease, in Nucleic Acids Res., vol. 28, n. 12, ENGLAND, giugno 2000, pp. 2396–405, DOI:10.1093/nar/28.12.2396, PMC 102739, PMID 10871373.
  18. ^ a b c J Cai, Gibbs E, Uhlmann F, Phillips B, Yao N, O'Donnell M, Hurwitz J, A complex consisting of human replication factor C p40, p37, and p36 subunits is a DNA-dependent ATPase and an intermediate in the assembly of the holoenzyme, in J. Biol. Chem., vol. 272, n. 30, UNITED STATES, luglio 1997, pp. 18974–81, DOI:10.1074/jbc.272.30.18974, ISSN 0021-9258 (WC · ACNP), PMID 9228079.
  19. ^ Z Q Pan, Chen M, Hurwitz J, The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis, in Proc. Natl. Acad. Sci. U.S.A., vol. 90, n. 1, UNITED STATES, Jan. 1993, pp. 6–10, DOI:10.1073/pnas.90.1.6, ISSN 0027-8424 (WC · ACNP), PMC 45588, PMID 8093561.
  20. ^ Carolin J Merkle, Karnitz Larry M, Henry-Sánchez John T, Chen Junjie, Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment, in J. Biol. Chem., vol. 278, n. 32, United States, agosto 2003, pp. 30051–6, DOI:10.1074/jbc.M211591200, ISSN 0021-9258 (WC · ACNP), PMID 12766176.
  21. ^ Tetsuo Maruyama, Farina Andrea, Dey Anup, Cheong JaeHun, Bermudez Vladimir P, Tamura Tomohiko, Sciortino Selvaggia, Shuman Jon, Hurwitz Jerard, Ozato Keiko, A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase, in Mol. Cell. Biol., vol. 22, n. 18, United States, settembre 2002, pp. 6509–20, DOI:10.1128/MCB.22.18.6509-6520.2002, ISSN 0270-7306 (WC · ACNP), PMC 135621, PMID 12192049.
  22. ^ a b R Fotedar, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A, A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells, in EMBO J., vol. 15, n. 16, ENGLAND, agosto 1996, pp. 4423–33, ISSN 0261-4189 (WC · ACNP), PMC 452166, PMID 8861969.
  23. ^ a b R Mossi, Jónsson Z O, Allen B L, Hardin S H, Hübscher U, Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen, in J. Biol. Chem., vol. 272, n. 3, UNITED STATES, Jan. 1997, pp. 1769–76, DOI:10.1074/jbc.272.3.1769, ISSN 0021-9258 (WC · ACNP), PMID 8999859.
  24. ^ H van der Kuip, Carius B, Haque S J, Williams B R, Huber C, Fischer T, The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins, in J. Mol. Med., vol. 77, n. 4, GERMANY, aprile 1999, pp. 386–92, DOI:10.1007/s001090050365, ISSN 0946-2716 (WC · ACNP), PMID 10353443.
  25. ^ N Azam, Vairapandi M, Zhang W, Hoffman B, Liebermann D A, Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control, in J. Biol. Chem., vol. 276, n. 4, United States, Jan. 2001, pp. 2766–74, DOI:10.1074/jbc.M005626200, ISSN 0021-9258 (WC · ACNP), PMID 11022036.
  26. ^ K Nakayama, Hara T, Hibi M, Hirano T, Miyajima A, A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth, in J. Biol. Chem., vol. 274, n. 35, UNITED STATES, agosto 1999, pp. 24766–72, DOI:10.1074/jbc.274.35.24766, ISSN 0021-9258 (WC · ACNP), PMID 10455148.
  27. ^ Takumi Kawabe, Suganuma Masashi, Ando Tomoaki, Kimura Mayumi, Hori Haruna, Okamoto Takashi, Cdc25C interacts with PCNA at G2/M transition, in Oncogene, vol. 21, n. 11, England, marzo 2002, pp. 1717–26, DOI:10.1038/sj.onc.1205229, ISSN 0950-9232 (WC · ACNP), PMID 11896603.
  28. ^ A Parker, Gu Y, Mahoney W, Lee S H, Singh K K, Lu A L, Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair, in J. Biol. Chem., vol. 276, n. 8, United States, febbraio 2001, pp. 5547–55, DOI:10.1074/jbc.M008463200, ISSN 0021-9258 (WC · ACNP), PMID 11092888.
  29. ^ Ghislaine Henneke, Koundrioukoff Stéphane, Hübscher Ulrich, Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation, in Oncogene, vol. 22, n. 28, England, luglio 2003, pp. 4301–13, DOI:10.1038/sj.onc.1206606, ISSN 0950-9232 (WC · ACNP), PMID 12853968.
  30. ^ S Hasan, Stucki M, Hassa P O, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger M O, Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300, in Mol. Cell, vol. 7, n. 6, United States, giugno 2001, pp. 1221–31, DOI:10.1016/S1097-2765(01)00272-6, ISSN 1097-2765 (WC · ACNP), PMID 11430825.
  31. ^ a b Z O Jónsson, Hindges R, Hübscher U, Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen, in EMBO J., vol. 17, n. 8, ENGLAND, aprile 1998, pp. 2412–25, DOI:10.1093/emboj/17.8.2412, ISSN 0261-4189 (WC · ACNP), PMC 1170584, PMID 9545252.
  32. ^ R Gary, Ludwig D L, Cornelius H L, MacInnes M A, Park M S, The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21, in J. Biol. Chem., vol. 272, n. 39, UNITED STATES, settembre 1997, pp. 24522–9, DOI:10.1074/jbc.272.39.24522, ISSN 0021-9258 (WC · ACNP), PMID 9305916.
  33. ^ U Chen, Chen S, Saha P, Dutta A, p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex, in Proc. Natl. Acad. Sci. U.S.A., vol. 93, n. 21, UNITED STATES, ottobre 1996, pp. 11597–602, DOI:10.1073/pnas.93.21.11597, ISSN 0027-8424 (WC · ACNP), PMC 38103, PMID 8876181.
  34. ^ I I Dianova, Bohr V A, Dianov G L, Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair, in Biochemistry, vol. 40, n. 42, United States, ottobre 2001, pp. 12639–44, DOI:10.1021/bi011117i, ISSN 0006-2960 (WC · ACNP), PMID 11601988.
  35. ^ a b c P Yu, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan D G, Luo Y, p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues, in Oncogene, vol. 20, n. 4, England, Jan. 2001, pp. 484–9, DOI:10.1038/sj.onc.1204113, ISSN 0950-9232 (WC · ACNP), PMID 11313979.
  36. ^ M Otterlei, Warbrick E, Nagelhus T A, Haug T, Slupphaug G, Akbari M, Aas P A, Steinsbekk K, Bakke O, Krokan H E, Post-replicative base excision repair in replication foci, in EMBO J., vol. 18, n. 13, ENGLAND, luglio 1999, pp. 3834–44, DOI:10.1093/emboj/18.13.3834, ISSN 0261-4189 (WC · ACNP), PMC 1171460, PMID 10393198.
  37. ^ T Ise, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K, Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen, in Cancer Res., vol. 59, n. 2, UNITED STATES, Jan. 1999, pp. 342–6, ISSN 0008-5472 (WC · ACNP), PMID 9927044.
  38. ^ S Matsuoka, Yamaguchi M, Matsukage A, D-type cyclin-binding regions of proliferating cell nuclear antigen, in J. Biol. Chem., vol. 269, n. 15, UNITED STATES, aprile 1994, pp. 11030–6, ISSN 0021-9258 (WC · ACNP), PMID 7908906.
  39. ^ a b Y Xiong, Zhang H, Beach D, Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation, in Genes Dev., vol. 7, n. 8, UNITED STATES, agosto 1993, pp. 1572–83, DOI:10.1101/gad.7.8.1572, ISSN 0890-9369 (WC · ACNP), PMID 8101826.
  40. ^ M R Rountree, Bachman K E, Baylin S B, DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci, in Nat. Genet., vol. 25, n. 3, UNITED STATES, luglio 2000, pp. 269–77, DOI:10.1038/77023, ISSN 1061-4036 (WC · ACNP), PMID 10888872.
  41. ^ Tetsuo Iida, Suetake Isao, Tajima Shoji, Morioka Hiroshi, Ohta Satoshi, Obuse Chikashi, Tsurimoto Toshiki, PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA, in Genes Cells, vol. 7, n. 10, England, ottobre 2002, pp. 997–1007, DOI:10.1046/j.1365-2443.2002.00584.x, ISSN 1356-9597 (WC · ACNP), PMID 12354094.
  42. ^ L S Chuang, Ian H I, Koh T W, Ng H H, Xu G, Li B F, Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1, in Science, vol. 277, n. 5334, UNITED STATES, settembre 1997, pp. 1996–2000, DOI:10.1126/science.277.5334.1996, ISSN 0036-8075 (WC · ACNP), PMID 9302295.
  43. ^ Snezana Milutinovic, Zhuang Qianli, Szyf Moshe, Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification, in J. Biol. Chem., vol. 277, n. 23, United States, giugno 2002, pp. 20974–8, DOI:10.1074/jbc.M202504200, ISSN 0021-9258 (WC · ACNP), PMID 11929879.
  44. ^ H He, Tan C K, Downey K M, So A G, A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen, in Proc. Natl. Acad. Sci. U.S.A., vol. 98, n. 21, United States, ottobre 2001, pp. 11979–84, DOI:10.1073/pnas.221452098, ISSN 0027-8424 (WC · ACNP), PMC 59753, PMID 11593007.
  45. ^ Jinshui Fan, Otterlei Marit, Wong Heng-Kuan, Tomkinson Alan E, Wilson David M, XRCC1 co-localizes and physically interacts with PCNA, in Nucleic Acids Res., vol. 32, n. 7, England, 2004, pp. 2193–201, DOI:10.1093/nar/gkh556, PMC 407833, PMID 15107487.
  46. ^ M Serrano, Hannon G J, Beach D, A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4, in Nature, vol. 366, n. 6456, ENGLAND, dicembre 1993, pp. 704–7, DOI:10.1038/366704a0, ISSN 0028-0836 (WC · ACNP), PMID 8259207.
  47. ^ Diamanto Matheos, Ruiz Marcia T, Price Gerald B, Zannis-Hadjopoulos Maria, Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication, in Biochim. Biophys. Acta, vol. 1578, n. 1-3, Netherlands, ottobre 2002, pp. 59–72, ISSN 0006-3002 (WC · ACNP), PMID 12393188.
  48. ^ K Komatsu, Wharton W, Hang H, Wu C, Singh S, Lieberman H B, Pledger W J, Wang H G, PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition, in Oncogene, vol. 19, n. 46, ENGLAND, novembre 2000, pp. 5291–7, DOI:10.1038/sj.onc.1203901, ISSN 0950-9232 (WC · ACNP), PMID 11077446.
  49. ^ M L Smith, Chen I T, Zhan Q, Bae I, Chen C Y, Gilmer T M, Kastan M B, O'Connor P M, Fornace A J, Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen, in Science, vol. 266, n. 5189, UNITED STATES, novembre 1994, pp. 1376–80, DOI:10.1126/science.7973727, ISSN 0036-8075 (WC · ACNP), PMID 7481777.
  50. ^ I T Chen, Smith M L, O'Connor P M, Fornace A J, Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA, in Oncogene, vol. 11, n. 10, ENGLAND, novembre 1995, pp. 1931–7, ISSN 0950-9232 (WC · ACNP), PMID 7478510.
  51. ^ M Vairapandi, Azam N, Balliet A G, Hoffman B, Liebermann D A, Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control, in J. Biol. Chem., vol. 275, n. 22, UNITED STATES, giugno 2000, pp. 16810–9, DOI:10.1074/jbc.275.22.16810, ISSN 0021-9258 (WC · ACNP), PMID 10828065.
  52. ^ P A Hall, Kearsey J M, Coates P J, Norman D G, Warbrick E, Cox L S, Characterisation of the interaction between PCNA and Gadd45, in Oncogene, vol. 10, n. 12, ENGLAND, giugno 1995, pp. 2427–33, ISSN 0950-9232 (WC · ACNP), PMID 7784094.
  53. ^ Q Yang, Manicone A, Coursen J D, Linke S P, Nagashima M, Forgues M, Wang X W, Identification of a functional domain in a GADD45-mediated G2/M checkpoint, in J. Biol. Chem., vol. 275, n. 47, UNITED STATES, novembre 2000, pp. 36892–8, DOI:10.1074/jbc.M005319200, ISSN 0021-9258 (WC · ACNP), PMID 10973963.
  54. ^ Xiaoqing Lu, Tan Cheng-Keat, Zhou Jin-Qiu, You Min, Carastro L Michael, Downey Kathleen M, So Antero G, Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta, in J. Biol. Chem., vol. 277, n. 27, United States, luglio 2002, pp. 24340–5, DOI:10.1074/jbc.M200065200, ISSN 0021-9258 (WC · ACNP), PMID 11986310.
  55. ^ M Scott, Bonnefin P, Vieyra D, Boisvert F M, Young D, Bazett-Jones D P, Riabowol K, UV-induced binding of ING1 to PCNA regulates the induction of apoptosis, in J. Cell. Sci., vol. 114, Pt 19, England, ottobre 2001, pp. 3455–62, ISSN 0021-9533 (WC · ACNP), PMID 11682605.
  56. ^ L Haracska, Johnson R E, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S, Physical and functional interactions of human DNA polymerase eta with PCNA, in Mol. Cell. Biol., vol. 21, n. 21, United States, novembre 2001, pp. 7199–206, DOI:10.1128/MCB.21.21.7199-7206.2001, ISSN 0270-7306 (WC · ACNP), PMC 99895, PMID 11585903.
  57. ^ Li Liu, Rodriguez-Belmonte Esther M, Mazloum Nayef, Xie Bin, Lee Marietta Y W T, Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen, in J. Biol. Chem., vol. 278, n. 12, United States, marzo 2003, pp. 10041–7, DOI:10.1074/jbc.M208694200, ISSN 0021-9258 (WC · ACNP), PMID 12522211.
  58. ^ S Hasan, Hassa P O, Imhof R, Hottiger M O, Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis, in Nature, vol. 410, n. 6826, England, marzo 2001, pp. 387–91, DOI:10.1038/35066610, ISSN 0028-0836 (WC · ACNP), PMID 11268218.
  59. ^ K Fujise, Zhang D, Liu J, Yeh E T, Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen, in J. Biol. Chem., vol. 275, n. 50, UNITED STATES, dicembre 2000, pp. 39458–65, DOI:10.1074/jbc.M006626200, ISSN 0021-9258 (WC · ACNP), PMID 10978339.
  60. ^ M Ducoux, Urbach S, Baldacci G, Hübscher U, Koundrioukoff S, Christensen J, Hughes P, Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta, in J. Biol. Chem., vol. 276, n. 52, United States, dicembre 2001, pp. 49258–66, DOI:10.1074/jbc.M106990200, ISSN 0021-9258 (WC · ACNP), PMID 11595739.
  61. ^ a b H Watanabe, Pan Z Q, Schreiber-Agus N, DePinho R A, Hurwitz J, Xiong Y, Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen, in Proc. Natl. Acad. Sci. U.S.A., vol. 95, n. 4, UNITED STATES, febbraio 1998, pp. 1392–7, DOI:10.1073/pnas.95.4.1392, ISSN 0027-8424 (WC · ACNP), PMC 19016, PMID 9465025.
  62. ^ Lajos Haracska, Unk Ildiko, Johnson Robert E, Phillips Barbara B, Hurwitz Jerard, Prakash Louise, Prakash Satya, Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA, in Mol. Cell. Biol., vol. 22, n. 3, United States, febbraio 2002, pp. 784–91, DOI:10.1128/MCB.22.3.784-791.2002, ISSN 0270-7306 (WC · ACNP), PMC 133560, PMID 11784855.
  63. ^ Giovanni Maga, Villani Giuseppe, Ramadan Kristijan, Shevelev Igor, Tanguy Le Gac Nicolas, Blanco Luis, Blanca Giuseppina, Spadari Silvio, Hübscher Ulrich, Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis, in J. Biol. Chem., vol. 277, n. 50, United States, dicembre 2002, pp. 48434–40, DOI:10.1074/jbc.M206889200, ISSN 0021-9258 (WC · ACNP), PMID 12368291.
  64. ^ Noriko Shimazaki, Yoshida Kenta, Kobayashi Toshiko, Toji Shingo, Tamai Katsuyuki, Koiwai Osamu, Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme, in Genes Cells, vol. 7, n. 7, England, luglio 2002, pp. 639–51, ISSN 1356-9597 (WC · ACNP), PMID 12081642.
  65. ^ Akira Motegi, Liaw Hung-Jiun, Lee Kyoo-Young, Roest Henk P, Maas Alex, Wu Xiaoli, Moinova Helen, Markowitz Sanford D, Ding Hao, Hoeijmakers Jan H J, Myung Kyungjae, Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks, in Proc. Natl. Acad. Sci. U.S.A., vol. 105, n. 34, United States, agosto 2008, pp. 12411–6, DOI:10.1073/pnas.0805685105, PMC 2518831, PMID 18719106.
  66. ^ Ildiko Unk, Hajdú Ildikó, Fátyol Károly, Hurwitz Jerard, Yoon Jung-Hoon, Prakash Louise, Prakash Satya, Haracska Lajos, Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination, in Proc. Natl. Acad. Sci. U.S.A., vol. 105, n. 10, United States, marzo 2008, pp. 3768–73, DOI:10.1073/pnas.0800563105, PMC 2268824, PMID 18316726.
  67. ^ Jan Brun, Chiu Roland, Lockhart Katherine, Xiao Wei, Wouters Bradly G, Gray Douglas A, hMMS2 serves a redundant role in human PCNA polyubiquitination, in BMC Mol. Biol., vol. 9, England, 2008, p. 24, DOI:10.1186/1471-2199-9-24, PMC 2263069, PMID 18284681.
  68. ^ Jean-François Rual, Venkatesan Kavitha, Hao Tong, Hirozane-Kishikawa Tomoko, Dricot Amélie, Li Ning, Berriz Gabriel F, Gibbons Francis D, Dreze Matija, Ayivi-Guedehoussou Nono, Klitgord Niels, Simon Christophe, Boxem Mike, Milstein Stuart, Rosenberg Jennifer, Goldberg Debra S, Zhang Lan V, Wong Sharyl L, Franklin Giovanni, Li Siming, Albala Joanna S, Lim Janghoo, Fraughton Carlene, Llamosas Estelle, Cevik Sebiha, Bex Camille, Lamesch Philippe, Sikorski Robert S, Vandenhaute Jean, Zoghbi Huda Y, Smolyar Alex, Bosak Stephanie, Sequerra Reynaldo, Doucette-Stamm Lynn, Cusick Michael E, Hill David E, Roth Frederick P, Vidal Marc, Towards a proteome-scale map of the human protein-protein interaction network, in Nature, vol. 437, n. 7062, England, ottobre 2005, pp. 1173–8, DOI:10.1038/nature04209, PMID 16189514.
  69. ^ Isabelle Frouin, Maga Giovanni, Denegri Marco, Riva Federica, Savio Monica, Spadari Silvio, Prosperi Ennio, Scovassi A Ivana, Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners, in J. Biol. Chem., vol. 278, n. 41, United States, ottobre 2003, pp. 39265–8, DOI:10.1074/jbc.C300098200, ISSN 0021-9258 (WC · ACNP), PMID 12930846.
  70. ^ J M Gulbis, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J, Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA, in Cell, vol. 87, n. 2, UNITED STATES, ottobre 1996, pp. 297–306, DOI:10.1016/S0092-8674(00)81347-1, ISSN 0092-8674 (WC · ACNP), PMID 8861913.
  71. ^ R Touitou, Richardson J, Bose S, Nakanishi M, Rivett J, Allday M J, A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome, in EMBO J., vol. 20, n. 10, England, maggio. 2001, pp. 2367–75, DOI:10.1093/emboj/20.10.2367, ISSN 0261-4189 (WC · ACNP), PMC 125454, PMID 11350925.

Bibliografia[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

  Portale Biologia: accedi alle voci di Wikipedia che trattano di Biologia