Operatori di creazione e distruzione

Da Wikipedia, l'enciclopedia libera.

In fisica, in particolare in meccanica quantistica, un operatore di creazione è un operatore che aumenta di uno il numero di particelle di uno stato quantistico. L'operatore di distruzione o di annichilazione è al contrario un operatore che riduce di uno il numero di particelle di uno stato ed è l'operatore aggiunto dell'operatore di creazione. L'uso di questi operatori è stato introdotto nel caso del problema dell'oscillatore armonico quantistico, dove sono definiti come gli operatori che aggiungono o rimuovono un quanto di energia al sistema. In seguito il loro uso è stato generalizzato a molti altri problemi e in generale la loro introduzione è alla base della fondazione della teoria quantistica dei campi e della seconda quantizzazione.

Definizione[modifica | modifica wikitesto]

L'operatore di creazione e l'operatore di annichilazione possono essere definiti semplicemente sulla base della loro azione quando sono applicati su uno stato quantico. Supponiamo che sia uno stato quantistico contenente particelle, o quanti di energia, allora possiamo assumere come definizione implicita dell'operatore di annichilazione la seguente espressione:

ovvero l'operatore di annichilazione applicato allo stato con n particelle, ne ha generato un altro che contiene una particella in meno. In modo assolutamente identico si può mostrare che:

In questo modo dallo stato fondamentale del sistema, che possiamo - ad esempio nel caso di una teoria di campo delle particelle elementari - identificare con il vuoto, tutti gli altri stati possono essere costruiti applicando l'operatore di creazione:

Oscillatore armonico quantistico[modifica | modifica wikitesto]

Si comprende, quindi, la terminologia introdotta da Dirac nel caso dell'oscillatore armonico quantistico: l'operatore fa passare il sistema dallo stato di energia n allo stato di energia n-1, esso, quindi, distrugge un quanto di energia; analogamente l'operatore fa passare il sistema dallo stato di energia n allo stato di energia n+1, esso, quindi, crea un quanto di energia. Noto lo stato fondamentale, si può ottenere, per ricorrenza, tutta la base degli autostati dell'hamiltoniana e di :

Rappresentazione matriciale[modifica | modifica wikitesto]

Le componenti matriciali degli operatori bosonici di creazione e annichilazione per l'oscillatore armonico quantistico sono:

Questi valori sono stati ottenuti utilizzando le seguenti relazioni:

e

Operatori di costruzione e distruzione in teoria quantistica dei campi[modifica | modifica wikitesto]

In Teoria quantistica dei campi e nei problemi a molti corpi si lavora con operatori di creazione e distruzione di stati quantistici, and . Questi operatori cambiano il valore dell'operatore numero,

,

di uno, in analogia al caso dell'oscillatore armonico. Gli indici (ad esempio ) rappresentano i numeri quantici che etichettano gli stati di singola particella del sistema e non sono necessariamente numeri singoli. Per esempio, una ennupla di numeri quantici viene usata per etichettare gli stati dell'atomo di idrogeno.

Le relazioni di commutazione degli operatori di creazione e distruzione in un sistema multiplo di bosoni sono,

dove è il commutatore è la delta di Kronecker.

Per i fermioni, il commutatore è sostituito dall'anticommutatore ,

Bibliografia[modifica | modifica wikitesto]

  • (EN) Michael E. Peskin, Daniel V. Schroeder (1995): An Introduction to Quantum Field Theory, Addison-Wesley ISBN 0201503972
  • Steven Weinberg. La teoria quantistica dei campi. Bologna, Zanichelli, 1998. ISBN 8808178943
  • (EN) Steven Weinberg (1995): The Quantum Theory of Fields: Volume 1, Foundations, Cambridge University Press
  • (EN) Steven Weinberg (1996): The Quantum Theory of Fields: Volume 2, Modern applications, Cambridge University Press
  • (EN) Steven Weinberg (2000): The Quantum Theory of Fields: Volume 3, Supersymmetry, Cambridge University Press
  • (EN) C. Itzykson e J. B. Zuber Quantum Field Theory MacGrawHill 1980/Dover 2006.
  • (EN) N. Bogoliubov e D. Shirkov Introduction to the theory of quantized fields Wiley-Intersceince, 1959.
  • L. D. Landau, E. Lifsits, V. Berestetskij e L. Pitaevskij Fisica teorica, vol. 4: Teoria quantistica relativistica (Editori Riuniti, 1978)
  • G, Mussardo,Il Modello di Ising. Introduzione alla Teoria dei Campi e delle Transizioni di Fase (Bollati-Boringhieri, 2007)
  • (EN) Robin Ticciati (1999): Quantum Field Theory for Mathematicians, Cambridge University Press
  • (EN) F. Mandl e G. Shaw. Quantum Field Theory. John Wiley & Sons, 1993.
  • (EN) F. Gross. Relativistic Quantum Mechanics and Field Theory. Wiley-Interscience, 1993.

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]