Metamorfismo

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

In mineralogia e petrologia si definisce metamorfismo l'insieme delle trasformazioni mineralogiche e/o strutturali allo stato solido che una roccia subisce quando viene a trovarsi, all'interno della crosta terrestre, in ambienti fisico-chimici diversi da quelli in cui si è originata. I fattori che determinano il metamorfismo sono i cambiamenti di temperatura e pressione (litostatica e oientata o stress) e la presenza/assenza e attività dei fluidi contenuti nella roccia.

Caratteri generali del metamorfismo[modifica | modifica wikitesto]

Il limite inferiore del metamorfismo è rappresentato dalla diagenesi, ossia il campo di pressioni e temperature in cui avvengono i cambiamenti chimico-fisici che trasformano un sedimento in una roccia sedimentaria coerente, quello superiore dalle temperature di inizio fusione della roccia, che danno origine alle rocce ignee. Poiché non comporta la fusione della roccia, il metamorfismo viene definito un processo subsolidus.
La roccia originaria che subisce metamorfismo è detta "protolito". Può essere una roccia sedimentaria, una roccia ignea o una roccia già metamorfica.
Il metamorfismo è un processo essenzialmente isochimico, nel senso che, anche se può dare origine a nuovi minerali, non cambia, se non marginalmente, la composizione chimica complessiva della roccia. Da ciò deriva che, nelle stesse condizioni di pressione e temperatura (P-T), protoliti a chimismo diverso daranno origine a rocce metamorfiche con minerali diversi. Ad esempio, nelle stesse condizioni di T e P un basalto darà origine ad un’anfibolite, roccia formata essenzialmente da anfibolo e plagioclasio, mentre un'argilla darà origine ad un micascisto, formato da quarzo, miche e granato. Il carattere isochimico distingue il metamorfismo dal metasomatismo, che invece comporta l'immissione e/o l'eliminazione di elementi chimici nella roccia.

Etimologia[modifica | modifica wikitesto]

Metamorfismo viene dal greco metamórphōsis, derivato di metamorphóō = trasformo.

Fattori del metamorfismo[modifica | modifica wikitesto]

  1. Calore: il calore è il più importante agente delle trasformazioni mineralogiche. Minerali stabili a basse temperature sono sostituiti da altri stabili a temperature più alte o viceversa. L'aumento di temperatura inoltre rende più veloci le reazioni chimiche che si instaurano tra i minerali a contatto. I minerali metamorfici che con la loro comparsa sono indicativi di un cambiamento di temperatura sono detti geotermometri. Il calore può avere tre origini:
    1. trasferimento di calore a contatto con un magma bollente che si intrude dal basso: è il caso del metamorfismo detto di contatto (vedi sotto);
    2. gradiente geotermico, ossia aumento della temperatura all'aumentare della profondità a causa dell'aumento di pressione e del decadimento di minerali radioattivi. Mediamente la temperatura aumenta di circa 3 °C ogni 100 m di profondità, variando da un minimo di 1,5 a un massimo di 5 °C. Quando una roccia viene portata in profondità, ad esempio lungo un piano di subduzione, la roccia subisce trasformazioni che comportano la neoformazione di minerali di più alta temperatura: in questo caso il metamorfismo viene detto prògrado. Al contrario, per sollevamento, ad esempio durante una collisione di masse continentali, la roccia subisce trasformazioni che comportano la neoformazione di minerali di più bassa temperatura: in questo caso il metamorfismo è retrògrado;
    3. calore da attrito lungo faglie e piani di subduzione.
  2. Pressione litostatica: è la pressione dovuta alla colonna di rocce che sovrasta la roccia stessa; essa è uguale in ogni direzione e aumenta mediamente di 270 bar (= 27 MPa) ogni km nella crosta e 330 bar (= 33 MPa) ogni km nel mantello: l'effetto è quello di rendere stabili i minerali con un impaccamento di atomi più compatto e quindi che occupano meno spazio. I minerali metamorfici che con la loro comparsa sono indicativi di un cambiamento di pressione sono detti geobarometri.
  3. Pressione orientata (stress): è una pressione aggiuntiva che si genera quando la roccia è sottoposta a forze compressive durante un piegamento o a sforzi di taglio lungo piani di scorrimento. In molti casi comporta solo trasformazioni strutturali della roccia e/o ricristallizzazione dei minerali esistenti, senza formazione di nuovi minerali. A seconda della composizione iniziale e della profondità dà origine alle strutture seguenti: clivaggio, lineazione, foliazione e scistosità.
  4. Circolazione di fluidi: i principali fluidi metamorfici sono l'acqua allo stato gassoso e il diossido di carbonio (CO2). I fluidi hanno un ruolo essenziale nel processo metamorfico: sono l'agente di mobilizzazione e trasporto degli ioni nelle reazioni metamorfiche e favoriscono la ricristallizzazione orientata dei minerali sottoposti a stress. L'assenza di fluidi o la loro impossibilità di muoversi tra i cristalli possono di fatto inibire la formazione di nuovi minerali (blastesi) e conservare in condizioni metastabili quelli del protolito. Questo spiega perché rocce provenienti da grande profondità, come ad es. peridotiti o gabbri, possono rimanere inalterate, pur avendo attraversato durante la loro risalita tutti gli stadi di pressione e temperatura tipici del metamorfismo. Le origini dei fluidi metamorfici sono le seguenti:
    1. acqua e CO2 contenute nei pori delle rocce sedimentarie;
    2. acqua meteorica o fluidi juvenili[1] contenuti nelle fratture delle rocce;
    3. disidratazione di minerali idrati come minerali delle argille, miche, anfiboli, dove l'acqua è presente in forma molecolare o legata sotto forma di ossidrile (OH-).
  5. tempo: il protolito deve essere sottoposto alle nuove condizioni di pressione e temperatura per un tempo sufficiente affinché tutti i processi che permettono il riadeguamento strutturale e composizionale abbiano luogo.

Paragenesi e facies[modifica | modifica wikitesto]

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Facies metamorfiche.

Al variare delle condizioni di T e P, varieranno i minerali che si formano, molti dei quali sono esclusivi delle rocce metamorfiche. Con il termine paragenesi si intende un'associazione di minerali originatisi contemporaneamente o con successione immediata in seguito allo stesso fenomeno minerogenetico. Una paragenesi è il risultato di un equilibrio chimico e termodinamico raggiunto dalle specie cristalline coesistenti in risposta alle nuove condizioni di T e P. La petrologia sperimentale ha permesso di stabilire, con un buon margine di affidabilità, a quali valori di P e T certi minerali e certe paragenesi si formano o scompaiono (sostituite da altre) in una roccia metamorfica. Tracciando in un diagramma P-T le linee che delimitano la comparsa/scomparsa di determinati minerali o associazioni di minerali di una paragenesi si è potuto dividere il campo del metamorfismo in diverse aree, ognuna delle quali rappresenta una facies metamorfica. I minerali che si possono formare in ciascuna di queste aree dipendono dalla composizione chimica della roccia di partenza (protolito). Protoliti a diverso chimismo svilupperanno, in ognuna di queste aree, minerali e paragenesi diverse, sicché possiamo dire che una facies metamorfica è definita da tutte le paragenesi che si sviluppano in un determinano campo di T e P. A ciascuna facies è stato dato il nome di una delle diverse rocce (la più significativa) che si formano in quell'ambito di T e P (anfiboliti, granuliti ecc.).

Temperatura, grado metamorfico, isograde e isobare[modifica | modifica wikitesto]

La petrologia sperimentale ha dimostrato che diversi minerali metamorfici compaiono solo quando la T raggiunge determinati valori, indipendentemente dalla P esistente. La comparsa di uno di questi minerali indica che la T ha raggiunto un certo valore, che si chiama grado metamorfico. Ad esempio, partendo da un protolito argilloso e aumentando via via la temperatura, si avrà la formazione prima di clorite e poi, a gradi metamorfici crescenti, di biotite, granato, staurolite, cianite e sillimanite. Così, raccogliendo molti campioni su di una vasta area e segnandone l'ubicazione su una carta, si possono unire tutti i punti in cui nei campioni compare o scompare un certo minerale: si ottiene così una serie di linee (in realtà delle superfici di cui noi vediamo l’intersersezione con il suolo) dette isògrade (cioè di ugual temperatura). L'area compresa tra due isograde contigue viene detta zona metamorfica (zona a biotite, zona a staurolite ecc.). Le zone metamorfiche sono utili per individuare, in un'area metamorfica, quale è stata la massima temperatura raggiunta dal metamorfismo (picco termico) e dove ciò è avvenuto.
In base alla sola temperatura il diagramma P-T è di solito diviso da 5 linee isograde verticali in metamorfismo di bassissima, bassa, media, alta e altissima temperatura. Allo stesso modo si può dividere il diagramma P-T in base alla sola pressione con 5 linee isobare orizzontali che definiscono il metamorfismo di bassissima, bassa, media, alta e altissima pressione.

Metamorfismo polifasico e percorsi P-T-t[modifica | modifica wikitesto]

Numerosi studi testimoniano che i cambiamenti di pressione e temperatura durante un evento metamorfico non devono necessariamente comportare una sola fase di riscaldamento e poi raffreddamento o una sola fase di aumento e poi decrescita di pressione. Ogni permanenza della roccia per un tempo adeguato a particolari condizioni di P-T, con l'azione chimica dei fluidi, genera una nuova paragenesi indicativa di quell'ambiente. Mutando le condizioni si generano nuove paragenesi e il metamorfismo è detto polifasico. Non sempre le nuove paragenesi cancellano completamente e dovunque le precedenti: molto spesso la roccia conserva in forma metastabile parte di cristalli e/o strutture di precedenti fasi. Così è possibile ricostruire il percorso evolutivo di una roccia nel tempo, il cosiddetto percorso P-T-t (pressione-temperatura-tempo): in un diagramma P-T si uniscono i punti con particolari pressioni e temperature indicate da una paragenesi. Le datazione radiometriche dei minerali, poi, permettono di collocare nel tempo la successione delle paragenesi e quindi di definire il percorso o i percorsi seguiti dalle rocce nel sottosuolo.

Tipi di metamorfismo[modifica | modifica wikitesto]

Il metamorfismo può essere classificato in base a diversi criteri:

  • L'estensione spaziale: si distinguono metamorfismo regionale, che interessa ampie aree, e metamorfismo locale, collegato a fenomeni di limitata estensione;
  • Il suo ambiente geologico: per esempio metamorfismo orogenico, di seppellimento, di fondo oceanico, di contatto, da dislocazione.;
  • La particolare causa di uno specifico metamorfismo: ad esempio metamorfismo da impatto (di meteorite), da folgore, idrotermale ecc.
  • Se è il risultato di un singolo evento o più eventi distanti nel tempo: nel primo caso si parla di monometamorfismo, nel secondo di polimetamorfismo;
  • Se è accompagnato da temperatura crescente o decrescente: come già detto, nel primo caso è prògrado, nel secondo è retrògrado.

Alcuni di questi criteri si sovrappongono parzialmente. Qui citiamo i tipi principali di metamorfismo, rimandando alle pagine specifiche per gli approfondimenti.

Metamorfismo regionale[modifica | modifica wikitesto]

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Metamorfismo regionale.

Il metamorfismo regionale detto anche dinamo-termico, occupa aree di vasta estensione coinvolgendo grandi volumi di roccia ed è associato a processi tettonici su larga scala, come l'espansione del fondo oceanico, la subduzione di una placca, il raccorciamento crostale collegato a collisione di placche, la subsidenza di bacini profondi ecc. Il principale ambiente del metamorfismo regionale è quello collegato allo sviluppo di una catena montuosa, detto anche metamorfismo orogenico: infatti tutte le grandi catene montuose profondamente erose mostrano alle loro radici un nucleo di rocce metamorfiche. Il metamorfismo può essere collegato a vari stadi del processo di corrugamento e coinvolge sia regimi compressionali che estensionali. Gli effetti dinamici e termici sono combinati in varie proporzioni e il regime di pressione e temperatura è molto ampio. Nella maggioranza dei casi il metamorfismo orogenico produce nelle rocce strutture orientate, come clivaggio, lineazione, foliazione e scistosità.

il metamorfismo regionale può essere progrado o o retrogrado, mono- o polifasico e può avvenire con diversi percorsi di pressione-temperatura (P-T).

Metamorfismo di contatto[modifica | modifica wikitesto]

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Metamorfismo di contatto.

Il metamorfismo di contatto detto anche metamorfismo termico (benché non sia l'unico generato dal solo calore) avviene quando i magmi, risalendo da zone profonde di crosta e mantello, vengonoo a contatto con rocce più fredde. Il magma, trasferendo calore alle rocce circostanti, provoca la loro ricristallizzazione; l'area su cui si estendono queste trasformazioni prende il nome di aureola di contatto ed è in essa che si producono le trasformazioni fisico/chimiche tipiche di questo metamorfismo. La presenza di fase fluida può aumentare l'ampiezza dell'aureola favorendo la diffusione termica e le reazioni chimiche di riequilibrio del sistema. Le temperature saranno più alte nelle rocce immediatamente a contatto e via via decrescenti verso le zone distali.

Metamorfismo di seppellimento[modifica | modifica wikitesto]

Magnifying glass icon mgx2.svgLo stesso argomento in dettaglio: Metamorfismo di seppellimento.

Questo tipo di metamorfismo, di estensione regionale, avviene alla base dei grossi bacini sedimentari e tipicamente non è associato nè a magmatismo nè a deformazioni da stress. Le rocce che ne risultano sono da parzialmente a totalmente ricristallizzate e mancano di scistosità.

Metamorfismo di fondo oceanico[modifica | modifica wikitesto]

È un tipo di metamorfismo da regionale a locale collegato ai profondi circuiti idrotermali che si sviluppano in ambiente oceanico vicino agli assi di espansione delle dorsali oceaniche. La ricristallizzazione, che è quasi sempre incompleta, abbraccia un ampio campo di temperature. Il metamorfismo (e l'associato metasomatismo) è innescato dai fluidi acquosi bollenti e aumenta d'intensità con la profondità.

Metamorfismo idrotermale[modifica | modifica wikitesto]

È un tipo di metamorfismo termico locale causato da fluidi ricchi di acqua bollente, collegato a specifici ambienti o cause: per esempio quando un'intrusione ignea libera acque bollenti iuvenili nelle rocce circostanti. il metasomatismo è comunemente associato a questo metamorfismo. Il metamorfismo di fondo oceanico si può considerare una forma regionale prodotta da eventi multipli ed estesi nel tempo di metamorfismo idrotermale.

Metamorfismo dinamico[modifica | modifica wikitesto]

Il metamorfismo dinamico (o meccanico o cataclastico) si ha a livello delle faglie ossia lungo piani di scorrimento di blocchi rocciosi. L'attrito dovuto allo slittamento comporta un notevole aumento di temperatura al punto da permettere la trasformazione delle parti di roccia che sono a contatto. Comporta una riduzione meccanica della grana e può presentare o meno una foliazione.

Forme particolari e rare di metamorfismo locale[modifica | modifica wikitesto]

Il metamorfismo da placca bollente si sviluppa sotto un'unità tettonica (cioè di provenienza alloctona) bollente: il suo gradiente termico è tipicamente invertito e concentrato in poco spazio. Il metamorfismo da impatto si sviluppa per l'impatto di un meteorite con la superficie terrestre. Comporta la parziale fusione e vaporizzazione delle rocce coinvolte. Il metamorfismo da folgore si sviluppa nel punto di caduta di uno o più fulmini. Il risultato è una folgorite, una roccia quasi interamente fusa. Il pirometamorfismo è un particolare tipo di metamorfismo di contatto caratterizzato da altissime temperature e bassissime pressioni, generato da un corpo vulcanico o subvulcanico. Si sviluppa tipicamente in xenoliti inclusi in queste rocce. Il metamorfismo da combustione è prodotto dalla combustione spontanea di sostanze naturali, come scisti bituminosi, carbone e petrolio.

Ultrametamorfismo[modifica | modifica wikitesto]

Il metamorfismo, infine, non può proseguire in modo indefinito oltre certi valori di temperatura e pressione, perché, oltrepassato un limite, avviene la fusione di una parte del materiale, avviando così fenomeni di ultrametamorfismo. La parte fusa impregna la massa rocciosa che si sta trasformando insinuandosi nelle cavità e in seguito, cristallizzando, si forma una roccia mista chiamata migmatite. Se invece il processo di fusione continua si arriva alla formazione di magmi.

Note[modifica | modifica wikitesto]

  1. ^ Si definiscono juvenili i fluidi liberati dai magmi durante il loro raffreddamento e cristallizzazione

Bibliografia[modifica | modifica wikitesto]

  • Casati P. - Scienze della Terra, volume 1 - Elementi di geologia generale (1996) - CittàStudi edizioni, Milano, ISBN 88-251-7126-9.
  • C. D'Amico C., F. Innocenti F., Sassi P. - Scienze della Terra - Magmatismo e Metamorfismo - Edizioni UTET., ISBN 88-02-04082-6.
  • Myron G. Best - Igneous and metamorphic petrology, 2nd edition (2003) - Blackwell
  • Daniele Fornasero - La Terra che vive (2004) - Gruppo Editoriale Il Capitello
  • Fettes D., Desmons J. - Metamorphic rocks: a classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks (2007) - Cambridge University Press

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]