Insieme delle soluzioni
In matematica, un insieme delle soluzioni è l'insieme dei valori che soddisfano una o più equazioni e/o disequazioni.
Per esempio, in un insieme di equazioni polinomiali a coefficienti reali l'insieme delle soluzioni reali è il sottoinsieme di contenente i numeri che sono zeri di tutti i polinomi, formalmente:
I simboli comunemente usati per indicare l'insieme delle soluzioni sono o anche . Non si dimentichi che l'insieme delle soluzioni è un sottoinsieme e come tale dipende dall'insieme in cui è contenuto (insieme dei numeri reali , complessi , ecc.). Ad esempio, l'equazione ha insieme delle soluzioni vuoto: per ma per le soluzioni sono due e quindi ha insieme delle soluzioni: .
L'insieme delle soluzioni può:
- avere una sola soluzione;
- avere diverse o infinite soluzioni;
- non avere soluzioni.
Esempi
[modifica | modifica wikitesto]Equazioni e soluzioni per :
- , l'insieme delle soluzioni è un intervallo;
- , l'insieme delle soluzioni è formato da coppie ordinate.
Un sistema di equazioni lineari:
Curiosità
[modifica | modifica wikitesto]In geometria algebrica, gli insiemi delle soluzioni di equazioni polinomiali sono usati per definire la topologia di Zariski (vedere varietà algebrica).