File proveniente da Wikimedia Commons. Clicca per visitare la pagina originale

File:Simple harmonic oscillator.gif

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search
Simple_harmonic_oscillator.gif(116 × 359 pixel, dimensione del file: 52 KB, tipo MIME: image/gif, ciclico, 15 frame, 1,1 s)
Logo di Commons
Questo file e la sua pagina di descrizione (discussione · modifica) si trovano su Wikimedia Commons (?)
Descrizione

Illustration of a en:Simple harmonic oscillator

Data
Fonte self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code).
Autore Oleg Alexandrov
Altre versioni

Damped spring.gifDamped spring.gif Damped version

GIF sviluppo
Matlab Logo.png
Questo diagramma è stato creato con MATLAB.

Matlab

function main()

% colors
   red      = [0.867    0.06    0.14];
   blue     = [0        129     205]/256;
   green    = [0        200     70]/256;
   black    = [0        0       0];
   white    = [1        1       1]*0.99;
   cardinal = [196      30      58]/256;
   cerulean = [0        123     167]/256;
   denim    = [21       96      189]/256;
   cobalt   = [0        71      171]/256;
   pblue    = [0        49      83]/256;
   teracotta= [226      114     91]/256;
   tene     = [205      87      0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color   = tene;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;

   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 8;

   A = 0.2; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)

   %  Each of the small lines has length l
   l = 0.05;

   N = 15;  % times per oscillation 
   No = 1; % number of oscillations
   for i = 1:N*No

      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;

   
      t = 2*pi*(i-1)/(N-0)+pi/2; % current time
      H= A*sin(t) +  B;      % position of the mass

      % plot the spring from Start to End
      Start = [0, 0]; End = [0, H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 

      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
            
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);

      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);

          
          % the bounding box
          Sx = -0.4*ww;  Sy = B-A-ms+0.05;
          Lx = 0.4*ww+l; Ly=l;
          axis([Sx, Lx, Sy, Ly]);
          plot(Sx, Sy, '*', 'color', white); % a hack to avoid a saveas to eps bug
          
      saveas(gcf, sprintf('Spring_frame%d.eps', 1000+i), 'psc2') %save the current frame
      disp(sprintf('Spring_frame%d', 1000+i)); %show the frame number we are at
      
      pause(0.1);
      
   end

% The following command was used to create the animated figure.    
% convert -antialias -loop 10000  -delay 7 -compress LZW Spring_frame10* Simple_harmonic_oscillator.gif
   

function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B

   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
   
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
   
   X=linspace(0, 1, Npoints);

   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
   
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 

% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
   
% shift by b to the right and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 

   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end

%  shift the spring to start from 0
   X = X-X(1);
   
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];

   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end

function plot_wall(S, E, l, lw, wall_color)

%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
   
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

   V=l*(0:0.1:1);

   for i=0:(no-1)
      plot(S+ i*spacing + V, V, 'color', wall_color)
   end

Public domain Io, detentore del copyright su quest'opera, la rilascio nel pubblico dominio. Questa norma si applica in tutto il mondo.
In alcuni paesi questo potrebbe non essere legalmente possibile. In tal caso:
Garantisco a chiunque il diritto di utilizzare quest'opera per qualsiasi scopo, senza alcuna condizione, a meno che tali condizioni siano richieste dalla legge.

Annotazioni Questa immagine è annotata: Vedi le annotazioni su Commons

Cronologia del file

Fare clic su un gruppo data/ora per vedere il file come si presentava nel momento indicato.

Data/OraMiniaturaDimensioniUtenteCommento
attuale05:12, 24 giu 2007Miniatura della versione delle 05:12, 24 giu 2007116 × 359 (52 KB)Oleg Alexandrovtweak
05:10, 24 giu 2007Miniatura della versione delle 05:10, 24 giu 2007157 × 362 (51 KB)Oleg AlexandrovReverted to earlier revision
05:10, 24 giu 2007Miniatura della versione delle 05:10, 24 giu 2007116 × 359 (7 KB)Oleg Alexandrovtweak
04:42, 24 giu 2007Miniatura della versione delle 04:42, 24 giu 2007157 × 362 (51 KB)Oleg Alexandrov{{Information |Description= |Source=self-made with en:Matlab. Converted to gif animation with the en:ImageMagik convert tool. |Date= ~~~~~ |Author= Oleg Alexandrov }} {{PD-self}}

La seguente pagina contiene collegamenti a questo file:

Utilizzo globale del file

Anche i seguenti wiki usano questo file:

Visualizza l'utilizzo globale di questo file.