In statistica, la disuguaglianza di Cramér-Rao, che prende il nome da Harald Cramér e Calyampudi Radhakrishna Rao, afferma che il reciproco della matrice informazione di Fisher
per un parametro
costituisce un limite inferiore alla varianza di uno stimatore corretto per il parametro (denotato
):
![{\displaystyle \ {\mbox{var}}\left({\hat {\vartheta }}\right)\geq {\frac {1}{{\mathcal {I}}(\vartheta )}}={\frac {1}{n{\mbox{E}}\left[\left({\frac {\partial }{\partial \vartheta }}\ln f(X;\vartheta )\right)^{2}\right]}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/699ea235932139b3fb47b5b1de086640b265f35a)
In alcuni casi, non esiste uno stimatore corretto che consegue il limite inferiore così stabilito.
Non è infrequente trovare riferimenti alla disuguaglianza di Cramér-Rao come al limite inferiore di Cramér-Rao.
Si ritiene che il matematico francese Maurice René Fréchet sia stato il primo a scoprire e dimostrare questa disuguaglianza.[1]
La disuguaglianza di Cramér-Rao si fonda su due deboli condizioni di regolarità che caratterizzano la funzione di densità
, e lo stimatore adottato,
. Tali condizioni richiedono che:
- L'informazione di Fisher sia sempre definita; ciò equivale a richiedere che, per ogni
tale che
,

- Le operazioni di integrazione rispetto a
e di derivazione rispetto a
possano essere scambiate all'interno del valore atteso dello stimatore
, ossia:
![{\displaystyle \ {\frac {\partial }{\partial \vartheta }}\left[\int T(x)f(x;\vartheta )dx\right]=\int T(x)\left[{\frac {\partial }{\partial \vartheta }}f(x;\vartheta )\right]dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/91ad755ae0c3148376a57e36d37d0f22b1420063)
- ogniqualvolta il secondo membro della relazione sopra è finito.
Laddove la seconda condizione di regolarità è estesa al secondo ordine di derivazione, è possibile esprimere la disuguaglianza tramite una forma alternativa dell'informazione di Fisher, così che il limite inferiore di Cramér-Rao è dato da:
![{\displaystyle \ {\mbox{var}}\left({\hat {\vartheta }}\right)\geq {\frac {1}{{\mathcal {I}}(\vartheta )}}={\frac {1}{-{\mbox{E}}\left[{\frac {\partial ^{2}}{\partial \vartheta ^{2}}}\ln f(X;\vartheta )\right]}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2918265b8e1d6eda7357f295f4fe0c883fd54421)
In alcuni casi, può risultare più semplice applicare la disuguaglianza nella forma testé espressa.
Si osservi che uno stimatore non corretto potrà avere una varianza o uno scarto quadratico medio inferiore al limite di Cramér-Rao; questo perché la disuguaglianza è riferita esclusivamente a stimatori corretti.
La dimostrazione della disuguaglianza di Cramér-Rao passa attraverso la verifica di un risultato più generale; per un qualsiasi stimatore (statistica di un campione
)
, il cui valore atteso è denotato da
, e per ogni
:
![{\displaystyle \ {\mbox{var}}(t(X))\geq {\frac {\left[\psi '(\vartheta )\right]^{2}}{{\mathcal {I}}(\vartheta )}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d91a96ad4891cc7288283bd5f7cbe47f464080ed)
La disuguglianza di Cramér-Rao discende direttamente da quest'ultima relazione, come caso particolare.
Sia dunque
una variabile casuale, avente funzione di densità
.
è una statistica utilizzata come estimatore del parametro
. Sia inoltre
il suo score, o derivata logaritmica rispetto a
:

Il valore atteso
è nullo. Ciò a sua volta implica che
. Espandendo quest'ultima espressione, si ha:

Svolgendo la derivata tramite la regola della catena:
e conoscendo la definizione di speranza matematica:
![{\displaystyle \ {\mbox{E}}\left(T{\frac {\partial }{\partial \vartheta }}\ln f(X;\vartheta )\right)=\int t(x)\left[{\frac {\partial }{\partial \vartheta }}f(x;\vartheta )\right]dx={\frac {\partial }{\partial \vartheta }}\left[\int t(x)f(x;\vartheta )dx\right]=\psi '(\vartheta )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c4a9297dcad8ec6276b186d4f2571b7f09fe84a)
dal momento che gli operatori di derivazione e integrazione commutano.
Tramite la disuguaglianza di Cauchy-Schwarz si ha inoltre:

dunque:
![{\displaystyle \ {\mbox{var}}(T)\geq {\frac {\left[\psi '(\vartheta )\right]^{2}}{{\mbox{var}}(V)}}={\frac {\left[\psi '(\vartheta )\right]^{2}}{{\mathcal {I}}(\vartheta )}}=\left[{\frac {\partial }{\partial \vartheta }}{\mbox{E}}(T)\right]^{2}{\frac {1}{{\mathcal {I}}(\vartheta )}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14970e6014345fad3417c45768d70d38d8f151be)
come volevasi dimostrare. Ora, se
è uno stimatore corretto per
,
, e
; dunque la relazione sopra diviene:

ossia la disuguaglianza di Cramér-Rao.
Al fine di estendere la disuguaglianza di Cramér-Rao al caso di un vettore di parametri, si definisca il vettore colonna:
![{\displaystyle {\boldsymbol {\theta }}=\left[\vartheta _{1},\vartheta _{2},\dots ,\vartheta _{d}\right]'\in \mathbb {R} ^{d}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/902433a8c952f75b7184fb18a8a2940954d6e6ba)
e sia ad esso associata una funzione di densità
che soddisfi le condizioni di regolarità elemento per elemento.
L'informazione di Fisher
è allora una matrice di dimensioni
, il cui generico elemento
è definito da:
![{\displaystyle \ {\mathcal {I}}_{m,k}={\mbox{E}}\left[{\frac {\partial }{\partial \vartheta _{m}}}\ln f\left(x;{\boldsymbol {\theta }}\right){\frac {\partial }{\partial \vartheta _{k}}}\ln f\left(x;{\boldsymbol {\theta }}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a078c30611ffeaa6652d8b8705c0b193ee0e220e)
La disuguaglianza di Cramér-Rao è dunque formulata come:

dove:

![{\displaystyle {\boldsymbol {\psi }}=\mathrm {E} \left[{\boldsymbol {T}}(X)\right]={\begin{bmatrix}\psi _{1}\left({\boldsymbol {\theta }}\right)&\psi _{2}\left({\boldsymbol {\theta }}\right)&\cdots &\psi _{d}\left({\boldsymbol {\theta }}\right)\end{bmatrix}}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea3d60caf422963e2d2aeecad1333c399895f78f)


e
è una matrice semidefinita positiva, ossia tale per cui
.
Se
è uno stimatore corretto, e dunque
, la disuguaglianza di Cramér-Rao è:

La disuguaglianza stessa è da intendersi nel senso che la differenza tra il primo e il secondo membro è ancora una matrice semidefinita positiva.
La disuguaglianza di Cramér-Rao è strettamente legata al concetto di efficienza di uno stimatore. In particolare, è possibile definire una misura di efficienza per uno stimatore
per il parametro (o vettore di parametri)
, come:

ossia la minima varianza possibile per uno stimatore corretto, basata sulla disuguaglianza di Cramér-Rao, rapportata all'effettiva varianza. In base alla disuguaglianza di Cramér-Rao, ovviamente
.
Si illustra il significato della disuguaglianza di Cramér-Rao tramite un esempio basato sulla variabile casuale normale multivariata. Sia un vettore aleatorio
, tale che:

dove
denota la distribuzione normale; la funzione di densità multivariata associata è:

La matrice informazione di Fisher ha generico elemento
:

dove
denota l'operatore traccia di una matrice.
Si consideri caso di un vettore aleatorio gaussiano come sopra, di dimensione
, con media nulla ed elementi indipendenti aventi ciascuno varianza
:

La matrice informazione di Fisher è allora
:

Dunque il limite inferiore di Cramér-Rao per la varianza di uno stimatore
per
è dato da:

Giova osservare che tale limite è pari alla varianza teorica dello stimatore di massima verosimiglianza per il parametro
nelle ipotesi presentate.
- ^ Wiebe R. Pestman, Mathematical Statistics: An Introduction, Walter de Gruyter, 1998, ISBN 3-11-015357-2, p. 118.
- D.C. Boes, F.A. Graybill, A.M. Mood (1988), Introduzione alla Statistica, McGraw-Hill Libri Italia, ISBN 88-386-0661-7, un testo di riferimento per i fondamenti della statistica matematica; la disuguaglianza di Cramér-Rao è trattata nei capitoli sui metodi di ricerca degli stimatori.
- Alexander Craig Aitken e Harold Silverstone, "On the Estimation of Statistical Parameters", in Proceedings of the Royal Society of Edinburgh, 1942, vol. 61, pp. 186-194, dove gli autori sviluppano idee di Ronald Fisher descrivendo un caso particolare di quella che sarebbe diventate la Disuguaglianza di Cramèr-Rao