Distribuzione normale multivariata

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search
Funzione di densità di una normale multivariata

In teoria della probabilità e statistica, la distribuzione normale multivariata o distribuzione gaussiana multivariata o vettore gaussiano è una generalizzazione della distribuzione normale (univariata) a dimensioni più elevate. Una definizione è che un vettore di variabili aleatorie ha una distribuzione normale k-variata se ogni combinazione lineare delle sue k componenti ha distribuzione normale univariata. La sua importanza deriva principalmente dal teorema del limite centrale multivariato. La distribuzione normale multivariata è spesso utilizzata per descrivere, almeno approssimativamente, un qualunque insieme di variabili aleatorie a valori reali (possibilmente) correlate, ognuna delle quali è clusterizzata attorno ad un valore medio.

Definizioni[modifica | modifica wikitesto]

Notazione e parametrizzazione[modifica | modifica wikitesto]

La distribuzione normale multivariata di un vettore aleatorio k-dimensionale può essere scritta secondo la notazione:

o, per rendere esplicito il fatto che sia k-dimensionale,

con un vettore della media d dimensione k

e matrice di covarianza di dimensione

per cui La matrice inversa della matrice di covarianza è chiamata matrice di precisione, e si indica come .

Vettore aleatorio normale standard[modifica | modifica wikitesto]

Un vettore aleatorio a valori reali è detto vettore aleatorio normale standard se tutte le sue componenti sono indipendenti e ognuna è una variabile aleatoria normale di valore medio nullo e varianza unitaria, cioè se per tutti i valori di .[1]p. 454

Vettore aleatorio normale centrato[modifica | modifica wikitesto]

Un vettore aleatorio a valori reali è chiamato vettore aleatorio normale centrato se esiste una matrice deterministica di dimensione tale per cui ha la stessa distribuzione di dove è un vettore aleatorio normale standard con componenti.[1]p. 454

Vettore aleatorio normale[modifica | modifica wikitesto]

Un vettore aleatorio a valori reali è detto vettore aleatorio normale se esistono un vettore aleatorio -dimensionale , che è un vettore aleatorio normale standard, un vettore -dimensionale , e una matrice di dimensione , tale per cui .[2]p. 454[1]p. 455

Formalmente:

Da qui la matrice delle covarianze è .

Nel caso degenere in cui la matrice delle covarianze fosse singolare, la distribuzione corrispondente non ha densità; vedi la sezione seguente per dettagli. Questa situazione capita frequentemente in statistica; per esempio, nella distribuzione dei vettori dei residui nel metodo di regressione dei minimi quadrati ordinario. Le in genere non sono indipendenti; possono essere visti come il risultato dell'applicazione della matrice all'insieme delle variabili gaussiane indipendenti .

Definizioni equivalenti[modifica | modifica wikitesto]

Le seguenti definizioni sono equivalenti alla definizione data in precedenza. Un vettore aleatorio ha una distribuzione normale multivariata se soddisfa una delle seguenti condizioni equivalenti.

  • Ogni combinazione lineare delle proprie componenti è normalmente distribuita. Cioè, per un qualunque vettore costante , il valore aleatorio ha una distribuzione normale univariata, dove una distribuzione normale univariata con varianza nulla è un punto materiale sulla sua media.
  • Esistono un vettore k-dimensionale e una matrice di dimensione simmetrica e positiva semidefinita , tali per cui la funzione caratteristica di è

La distribuzione normale sferica può essere caratterizzata come l'unica distribuzione in cui le componenti siano indipendenti in un qualunque sistema di coordinate cartesiano.[3][4]

Note[modifica | modifica wikitesto]

  1. ^ a b c Amos Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2009, ISBN 978-0-521-19395-5.
  2. ^ Allan Gut, An Intermediate Course in Probability, Springer, 2009, ISBN 978-1-4419-0161-3.
  3. ^ M. Kac, On a characterization of the normal distribution, in American Journal of Mathematics, vol. 61, n. 3, 1939, pp. 726–728, DOI:10.2307/2371328, JSTOR 2371328.
  4. ^ Fabian Sinz, Sebastian Gerwinn e Matthias Bethge, Characterization of the p-generalized normal distribution, in Journal of Multivariate Analysis, vol. 100, n. 5, 2009, pp. 817–820, DOI:10.1016/j.jmva.2008.07.006.

Voci correlate[modifica | modifica wikitesto]