Disgiunzione

Da Wikipedia, l'enciclopedia libera.

Nella teoria degli insiemi la disgiunzione è la relazione che sussiste fra due insiemi che non hanno alcun elemento in comune. In altre parole, due insiemi A e B sono disgiunti se la loro intersezione è l'insieme vuoto:

Esempi[modifica | modifica wikitesto]

Si considerino gli insiemi

mentre A e B non sono disgiunti, A e C sono disgiunti.

Sono disgiunti l'insieme dei numeri pari e quello dei numeri dispari. Non lo sono l'insieme dei numeri reali e l'insieme dei numeri immaginari: hanno in comune lo zero inteso come numero complesso.

Varie[modifica | modifica wikitesto]

La disgiunzione di insiemi è una relazione simmetrica, non riflessiva (l'unico elemento in relazione con sé stesso è l'insieme vuoto) e non transitiva. Un controesempio per la non transitività è dato dai seguenti insiemi

 ;

E ed F sono disgiunti, come lo sono E e G; F e G invece non sono disgiunti.

Una famiglia di insiemi per si dice costituita da insiemi mutuamente disgiunti se per ogni coppia di indici distinti i corrispondenti insiemi sono disgiunti: . Notare che questa è una proprietà più forte del richiedere che l'intersezione totale sia vuota. Un esempio è la famiglia costituita dagli insiemi E, F e G definiti sopra.

Una partizione di un insieme è costituita da un ricoprimento fatto con suoi sottoinsiemi mutuamente disgiunti.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica