Costante di Eulero-Mascheroni

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search
Costante di Eulero-Mascheroni
Simbolo γ
Valore 0,57721566490153286060...
(sequenza A001620 dell'OEIS)
Origine del nome Eulero e Lorenzo Mascheroni
Frazione continua [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, ...]
(sequenza A002852 dell'OEIS)
Campo numeri reali (congetturato irrazionale)
Costanti correlate Costanti di Stieltjes, Costante di Meissel-Mertens

La costante di Eulero - Mascheroni è una costante matematica, usata principalmente nella teoria dei numeri e nell'analisi matematica. È definita come limite della differenza tra la serie armonica troncata e il logaritmo naturale:

dove è l'ennesimo numero armonico. La sua valutazione approssimata è:

γ ≈ 0,57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...[1]

Non è noto se γ sia un numero razionale o meno. Tuttavia, se si suppone che γ sia razionale, l'analisi in frazioni continue dimostra che il suo denominatore ha più di 10242080 cifre.[2]

Le costanti di Stieltjes sono una generalizzazione di tale costante.

Rappresentazione integrale[modifica | modifica wikitesto]

La costante può essere definita in più modi attraverso gli integrali:

dove le parentesi indicano la funzione parte intera (floor)

Altri integrali collegati con sono:

Sviluppo in serie[modifica | modifica wikitesto]

La Costante di Eulero-Mascheroni si può esprimere tramite molte serie:

È notabile la serie trovata da Vacca nel 1910:

dove, nuovamente, le parentesi indicano la funzione parte intera (floor).

Essa si generalizza in

per ogni intero .

Collegamento con le funzioni speciali[modifica | modifica wikitesto]

La Costante di Eulero-Mascheroni è collegata con molte funzioni speciali come la funzione zeta di Riemann, la funzione gamma e la funzione digamma.

Presenza in teoria dei numeri[modifica | modifica wikitesto]

La costante di Eulero-Mascheroni compare spesso in Teoria dei numeri, ad esempio collegata ai numeri primi

noto come terzo teorema di Mertens. Nel problema dei divisori di Dirichlet

Inoltre,

dove e sono rispettivamente il numero di 1 e di 0 nell'espansione binaria di (Sondow 2005).

Note[modifica | modifica wikitesto]

  1. ^ Il record per il calcolo di γ è di 108 000 000 di decimali (Patrick Demichel e Xavier Gourdon, 1999). V. Histoire des maths
  2. ^ havil, p. 97.

Bibliografia[modifica | modifica wikitesto]

  • Havil, J., Gamma: Exploring Euler's Constant, Princeton, NJ: Princeton University Press, 2003.

Voci correlate[modifica | modifica wikitesto]

La costante di Eulero - Mascheroni compare anche nelle seguenti voci:

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]


Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica