Algebra di divisione

Da Wikipedia, l'enciclopedia libera.

In matematica, in particolare nell'ambito dell'algebra astratta, un'algebra di divisione è un'algebra in cui l'operazione di divisione è, in un certo senso, possibile.

Definizione[modifica | modifica wikitesto]

Sia un'algebra su un campo tale da non consistere del solo elemento nullo. Se per ogni elemento ed ogni altro elemento non-nullo b di esiste esattamente un elemento di tale che , ed esattamente un elemento di tale che , allora è un'algebra di divisione.

Per algebre associative, la definizione può essere semplificata: un'algebra associativa su un campo è un'algebra di divisione se e solo se possiede un'identità moltiplicativa diversa dall'elemento nullo ed ogni elemento non nullo ammette un inverso moltiplicativo (ossia per ogni dell'algebra esiste un tale che , ove è l'identità moltiplicativa dell'algebra).

Esempi[modifica | modifica wikitesto]

Uno degli esempi più semplici di algebra di divisione associativa è costituito dall'algebra dei numeri reali .

Salendo di dimensione si trova l'algebra reale dei numeri complessi . Per il teorema di Gelfand-Mazur, ogni algebra di Banach che sia anche un'algebra di divisione è isomorfa a .

I quaternioni sono un esempio di algebra di divisione non commutativa sui reali.

Voci correlate[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica