Accumulatore agli ioni di litio

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search
Accumulatore agli ioni di litio
Specifiche accumulatore
Energia/peso 100-265 Wh/kg[1][2]
Energia/volume 250-639 Wh/L[3][4]
Potenza/peso da ~250 a ~340 W/kg
Efficienza di carica/scarica 80%-90%
Energia/prezzo 6.4 Wh/US$[5]
Velocità autoscarica da 0.35% a 2.5% al mese, dipendente dallo stato di carica (escluso circuito sicurezza)
Tempo di vita
Cicli vita 400-1200 cicli
Tensione nominale cella 3,6 / 3,7 / 3,8 / 3,85 V, LiFePO4 3,2 V
Temperature di carica
Batteria agli ioni di litio, Varta, Museum Autovision, Altlußheim, Germania
Cella cilindrica tipo 18650 prima della chiusura

L'accumulatore agli ioni di litio è un tipo di batteria ricaricabile, comunemente utilizzata per l'elettronica portatile, per i veicoli elettrici, in applicazioni industriali, militari e aerospaziali. L'invenzione si deve agli importanti progressi nel campo fatti a partire dagli anni settanta e ottanta da John Goodenough, Robert Huggins, Stanley Whittingham, Rachid Yazami e Akira Yoshino, progressi che nel 1991 permisero a Sony e Asahi Kasei la commercializzazione di questo tipo di batteria. Goodenough, Whittingham e Yoshino hanno ricevuto nel 2019 il Premio Nobel per la chimica per lo sviluppo delle batterie agli ioni di litio.[6]

Le batterie agli ioni di litio usano un composto di litio intercalato sull'elettrodo positivo e grafite sull'elettrodo negativo. Queste batterie hanno un'alta densità di energia, uno scarso effetto memoria[7] e bassa autoscarica; possono tuttavia costituire un pericolo per la sicurezza, poiché contengono un elettrolita infiammabile e se danneggiate o caricate in modo errato possono provocare esplosioni e incendi.[8]

Storia[modifica | modifica wikitesto]

L'accumulatore agli ioni di litio fu proposto negli anni 70 dal chimico britannico M. Stanley Whittingham mentre lavorava alla Exxon.[9] Furono necessari altri venti anni di sviluppo prima che fosse abbastanza sicuro per essere usato in massa sul mercato; la prima versione commerciale fu creata dalla Sony nel 1991, a seguito di una ricerca di un team diretto da John B. Goodenough.

Nel febbraio del 2005 la Altair NanoTechnology[10], un'azienda statunitense situata in Reno (Nevada), annunciò un materiale per elettrodi di batterie al litio di dimensioni nanoscopiche. Il prototipo della batteria ha tre volte la potenza delle attuali batterie e può essere pienamente ricaricato in 6 minuti.

Nel marzo 2005 la Toshiba ha annunciato un'altra batteria al litio a ricarica veloce, basata su una nuova tecnologia di nanomateriali, che procurano una ricarica ancora più veloce, una capacità più grande e un ciclo di vita più lungo. La batteria potrà essere utilizzata primariamente in settori industriali o negli autotrasporti[11].

Nel novembre 2005 la A123Systems annunciò[12] una nuova batteria ancora più potente e ricaricabile più velocemente[13] basata su una ricerca autorizzata dal MIT. La loro prima pila[14] è in produzione (2006) e viene usata negli attrezzi di potenza[15] e in conversioni Hybrids Plus[16] Prius PHEV (anche se la conversione costa più del prezzo dell'auto, soprattutto a causa del costo delle batterie).

Tutte queste formulazioni coinvolgono nuovi elettrodi. Aumentando l'area effettiva dell'elettrodo - diminuendo la resistenza interna della batteria - la corrente può essere aumentata sia durante l'uso sia durante la ricarica. Questo è simile agli sviluppi ottenuti con il supercondensatore. Di conseguenza la batteria è capace di sviluppare più potenza (in watt); tuttavia, la capacità della batteria (amperora) è aumentata solo di poco.

Nell'aprile 2006 un gruppo di scienziati del MIT annunciò di aver trovato un modo per utilizzare i virus per formare cavi nanoscopici che possono essere usati per costruire batterie agli ioni di litio ultra sottili con tre volte la normale densità di energia[17].

Nel giugno del 2006 ricercatori in Francia hanno creato elettrodi di batteria in nanostrutture con capacità che ammontano a parecchie volte la capacità energetica, per peso e volume, degli elettrodi convenzionali[18].

Nel 2009 la nuova Mercedes-Benz S 400 BlueHYBRID ha visto l'inserimento integrato delle batterie agli ioni di litio all'interno del circuito di climatizzazione dell'auto, con il vantaggio di far funzionare sempre la batteria a una temperatura ottimale (15-35 °C) e di aumentare la durata e il rendimento di esercizio. La Daimler, casa costruttrice dell'auto in questione, è inoltre in fase avanzata di realizzazione di uno speciale tipo di cella piatta per ospitare la batteria che offre alta densità di energia in un ingombro ridotto e con elevati livelli di sicurezza.

Alla fine del 2009 è stata presentata una soluzione per risolvere il problema dell'esplosione di una di queste batterie in cortocircuito, si tratta d'inserire dei reagenti che bloccano la reazione chimica qualora la batteria raggiunga i 130 °C evitando di fatto l'esplosione[19].

Un'altra possibile soluzione o palliativo al problema dell'esplosione della batteria è stata presentata da Apple, che ha presentato uno schema di una batteria munita di un involucro di rivestimento dotato di sacche e punti deboli per l'evacuazione dei vapori prodotti durante il cortocircuito[20].

Descrizione[modifica | modifica wikitesto]

Gli accumulatori agli ioni di litio possono essere costruiti in una vasta gamma di forme e dimensioni, in modo da riempire efficientemente gli spazi disponibili nei dispositivi che li utilizzano. Sono anche più leggeri degli equivalenti fabbricati con altri componenti chimici, questo perché gli ioni di litio hanno una densità di carica molto elevata, la più alta di tutti gli ioni che si sviluppano naturalmente. Gli ioni di litio sono piccoli, mobili e immagazzinabili più rapidamente di quelli di idrogeno; inoltre una batteria basata sul litio è più piccola di una con elementi di idrogeno (come per esempio le batterie NiMH) e con meno gas volatili.

Questi accumulatori hanno uno scarso effetto memoria,[7] inoltre hanno un basso tasso di autoscarica, circa il 5% mensile rispetto all'oltre 30% mensile delle comuni[21] batterie all'idruro metallico di nichel (NiMH) e al 20% mensile di quelle al nichel-cadmio, ma come altri tipi di batterie soffrono di una lenta perdita permanente di capacità.[22]

Corrente massima e scarica[modifica | modifica wikitesto]

La corrente massima che può essere prelevata in continuo da un accumulatore agli ioni di litio dipende sia dalla capacità, sia dal tipo di carico. Per esempio nei dispositivi dove sono richieste correnti elevate, le batterie agli ioni di litio anziché mostrare una graduale diminuzione della durata d'uso del dispositivo, possono smettere di funzionare bruscamente; al contrario i dispositivi che richiedono bassa potenza possono generalmente sfruttare l'intero ciclo di vita della batteria.

Per evitare danni irreversibili un elemento agli ioni di litio non va mai scaricato sotto una certa tensione, di conseguenza tutti i sistemi che lo utilizzano sono equipaggiati con un circuito che spegne il dispositivo quando la batteria viene scaricata sotto la soglia predefinita;[22] dovrebbe dunque essere impossibile scaricare la batteria "profondamente" in un sistema progettato per funzionare correttamente durante il normale uso.

Autoscarica[modifica | modifica wikitesto]

Le batterie ricaricabili agli ioni di litio, così come altri tipi di batterie ricaricabili, si scaricano gradualmente anche se non forniscono corrente e restano inutilizzate, questo comportamento di "autoscarica" viene generalmente dichiarato dai produttori ed è tipicamente pari all'1,5–2% al mese, più circa il 3% assorbito dal circuito di sicurezza. La velocità di autoscarica aumenta con l'innalzarsi della temperatura,[23] con lo stato di carica e con l'invecchiamento della batteria.

Durata della batteria[modifica | modifica wikitesto]

La vita media di un accumulatore agli ioni di litio è generalmente definita con il numero di cicli carica-scarica completi per raggiungere una determinata soglia di guasto, in termini di perdita di capacità o aumento di impedenza. Generalmente i produttori definiscono il numero massimo di cicli carica-scarica che possono portare la batteria all'80% della capacità nominale; inoltre l'accumulatore presenta un degrado progressivo anche se non viene utilizzato, quindi il produttore nel definire la vita media del prodotto valuta anche il periodo passivo di stoccaggio. Il degrado della batteria durante la conservazione è influenzato anche dalla temperatura e dallo stato di carica della batteria; la combinazione di carica completa (100% dello stato di carica) e una temperatura elevata (oltre 50 °C) può causare un forte calo della capacità e la produzione di gas.

La durata del ciclo di vita dell'accumulatore è influenzata da molti fattori, tra cui temperatura, corrente di scarica, corrente di carica e stato di carica (profondità di scarica). In applicazioni reali come smartphone, laptop e auto elettriche, le batterie non vengono mai caricate o scaricate completamente, quindi definire la durata della batteria attraverso cicli di scarica completi può essere fuorviante. Per evitare questa confusione i ricercatori a volte usano la definizione di "scarica cumulativa",[24] definita come la quantità totale di carica (in Ah) erogata dalla batteria durante tutta la sua vita, o cicli equivalenti che rappresentano la somma dei cicli "parziali" come frazioni di un ciclo completo di carica-scarica.[25]

Specifiche e design[modifica | modifica wikitesto]

  • Densità specifica di energia: da 150 a 200 W·h/kg (da 540 a 720) kJ/kg)
  • Densità volumetrica di energia: da 250 a 530 W·h/L (da 900 a 1900 J/cm3)
  • Densità specifica di potenza: da 300 a 1500 W/kg (@ 20 secondi[26] e 285 W·h/L)

La reazione chimica tipica della batteria agli ioni di litio è come segue:

Le batterie agli ioni di litio hanno una tensione nominale di 3,6~3,7V, che è il valore medio fra la tensione a piena carica (4,2V) e quella oltre la quale non deve scendere (3,0~3,2V). La carica si effettua a tensione costante con limitazione di corrente. Questo significa che la carica avviene a corrente costante finché l'elemento raggiunge quasi la tensione di 4,2V (per sicurezza di solito inferiore di alcune decine di millivolt a tale valore), dopodiché continua a tensione costante finché la corrente diventa nulla o quasi (tipicamente la carica viene terminata al 3% della corrente iniziale di carica). Il tempo di ricarica dipende dalla capacità in ampere-ora della batteria e dalla quantità di ampere erogati dal caricabatteria, che in ogni caso non può superare 1/10 della corrente di picco erogabile dalla batteria.

Gli elementi agli ioni di litio utilizzano i seguenti materiali: l'anodo è fatto con carbonio, il catodo è un ossido metallico e l'elettrolita è un sale di litio in solvente organico. Poiché in condizioni anormali di ricarica potrebbe essere prodotto litio metallico, che è molto reattivo e può sviluppare idrogeno se a contatto con umidità e quindi causare esplosioni, gli elementi agli ioni di litio solitamente hanno incorporati circuiti elettronici protettivi per evitare l'inversione di polarità, sovratensioni e surriscaldamento.

Interfaccia a elettrolita solido[modifica | modifica wikitesto]

Un elemento particolarmente importante per far funzionare le batterie agli ioni di litio è l'"interfaccia a elettrolita solido" (SEI). Gli elettroliti liquidi nelle batterie agli ioni di litio consistono in elettroliti di sali di litio, come l'esafluorofosfato (LiPF6), il tetrafluoborato (LiBF4), o il perclorato (LiClO4), e solventi organici, come l'etere. Un elettrolita liquido conduce ioni di litio e quindi consente il trasporto delle cariche tra il catodo e l'anodo quando la batteria fa passare una corrente elettrica attraverso un circuito esterno. Tuttavia, elettroliti liquidi e solventi organici si decompongono facilmente sugli anodi durante la carica, impedendo il funzionamento ulteriore della batteria. Invece se si utilizzano solventi organici appropriati, gli elettroliti si decompongono e formano un'interfaccia elettrolitica solida alla prima carica, isolante elettricamente ma altamente conduttiva per gli ioni di litio. L'interfaccia previene la decomposizione degli elettroliti durante le ricariche successive. Per esempio, il carbonato di etilene si decompone relativamente con una tensione alta e forma una interfaccia forte e stabile; questa interfaccia viene chiamata SEI.

Vedi triossido di uranio per avere dettagli su come lavora il catodo. Mentre gli ossidi di uranio non vengono usati nelle batterie commerciali, il modo in cui gli ossidi di uranio possono reversibilmente inserire cationi è lo stesso in cui lavora in molte pile agli ioni di litio.

Temperatura e carica di stoccaggio[modifica | modifica wikitesto]

È opportuno immagazzinare gli accumulatori agli ioni di litio a temperatura e carica corrette per mantenerne la capacità di carica. Per alcuni tipi di accumulatori al litio può essere necessario evitare di immagazzinarle a piena carica; per esempio una batteria conservata al 50% di carica può durare più di una conservata al 100%. Per converso se una batteria agli ioni di litio viene conservata con poca carica, c'è il rischio di permettere alla carica residua di cadere sotto la soglia minima, rendendo la batteria irrecuperabile; una volta che la carica è scesa sotto tale livello, ricaricarla può essere impossibile, in quanto il circuito interno di sicurezza presente nel dispositivo impedirà la ricarica.

Problemi di sicurezza[modifica | modifica wikitesto]

Esempio di batteria agli ioni di litio espansa e contenuta dal suo involucro contenitivo.

Le batterie agli ioni di litio possono rompersi, prendere fuoco o esplodere quando sono esposte alle alte temperature o alla luce diretta del sole. Non dovrebbero essere tenute in automobile durante il periodo caldo. Cortocircuitare una batteria al litio può causare incendi ed esplosioni.

Il contenitore di una batteria agli ioni di litio non va mai aperto per nessun motivo. Esse contengono dispositivi di sicurezza: se danneggiati, queste possono anche causare l'incendio o l'esplosione della batteria. Questi dispositivi di sicurezza possono talvolta risultare inefficaci, per esempio nel caso in cui vi siano contaminanti all'interno delle singole celle. Il richiamo di più di 10 milioni di batterie utilizzate in laptop Asus, Dell, Apple, Lenovo/IBM, Panasonic, Toshiba, Hitachi, Fujitsu e Sharp da parte della Sony a metà del 2006 fu una conseguenza della contaminazione interna da parte di particelle metalliche. Sotto certe circostanze, queste possono perforare il separatore, cortocircuitandole e convertendo rapidamente tutta l'energia della pila in calore[27]. Il richiamo delle batterie per laptop della Dell della metà del 2006 non è stato il primo, ma solo il più grande. In seguito ci sono stati numerosi richiami di batterie agli ioni di litio in telefoni cellulari e laptop dovuti a problemi di surriscaldamento. Nel 2004 la Kyocera Wireless richiamò circa un milione di batterie usate nei telefoni[28]. Nel dicembre 2009 la Dell ritirò circa 22.000 batterie dal mercato americano.

Kuzhikalail M. Abraham, un consulente sulle batterie al litio della E-Kem Sciences, dice che la spinta dell'industria dei computer ad aumentare la capacità delle batterie può testare i limiti dei componenti sensibili, come la membrana separatrice, una pellicola di polietilene o polipropilene spessa soltanto 20-25 µm. Precisa che la densità di energia delle batterie agli ioni di litio è più che raddoppiata da quando sono state introdotte nel 1991. Egli dice "Quando imballate la batteria con sempre più materiale, la pellicola può subire stress". È possibile rimpiazzare il catodo in ossido di litio e cobalto nelle batterie agli ioni di litio con catodi in metallo fosfato litiato, che non esplode e ha anche una maggiore vita di stoccaggio; queste batterie più sicure sembrano principalmente destinate alle automobili elettriche e altre applicazioni che necessitano grandi capacità e dove le problematiche di sicurezza sono più critiche.[29]

Note[modifica | modifica wikitesto]

  1. ^ (EN) Lithium-Ion, su panasonic.com (archiviato dall'url originale il 13 aprile 2010).
  2. ^ (EN) Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells; Application of Silicon-based Alloy in Anode, su greencarcongress.com, 25 dicembre 2009. URL consultato il 13 febbraio 2020.
  3. ^ (EN) NCR18650B (PDF), su na.industrial.panasonic.com (archiviato dall'url originale il 17 agosto 2018).
  4. ^ (EN) Specifications for NCR18650GA (PDF), su cdn.shopify.com.
  5. ^ (EN) Veronika Henze, Battery Pack Prices Fall As Market Ramps Up With Market Average At $156/kWh In 2019, su about.bnef.com, 3 dicembre 2019. URL consultato il 13 febbraio 2020.
  6. ^ (EN) The Nobel Prize in Chemistry 2019, su nobelprize.org. URL consultato il 10 ottobre 2019.
  7. ^ a b (EN) Leonid Leiva, Paul Scherrer Institute, Memory effect now also found in lithium-ion batteries, su phys.org, 15 aprile 2013. URL consultato il 10 ottobre 2019.
  8. ^ (EN) Alain Mauger, C.M. Julien, Critical review on lithium-ion batteries: are they safe? Sustainable? (PDF), Berlin, Springer Berlin Heidelberg, 28 giugno 2017, DOI:10.1007/s11581-017-2177-8. URL consultato il 10 ottobre 2019.
  9. ^ (EN) Electrical Energy Storage and Intercalation Chemistry, su ui.adsabs.harvard.edu, giugno 1976. URL consultato il 13 febbraio 2020.
  10. ^ (EN) Sito di Altair NanoTechnology Archiviato il 24 ottobre 2006 in Internet Archive.
  11. ^ (JA) Dal sito di Toshiba
  12. ^ (EN) Comunicato dal sito A123Systems Archiviato il 4 ottobre 2006 in Internet Archive.
  13. ^ (EN) Atti del congresso Green Car 2009
  14. ^ (EN) Da Hybrids-plus.com Archiviato il 3 novembre 2006 in Internet Archive.
  15. ^ (EN) DeWalt power tools
  16. ^ (EN) Hybrids Plus
  17. ^ (EN) Science Magazine
  18. ^ (EN) Articolo da Technology Review.com
  19. ^ Batterie che esplodono, incubo finito con STOBA, su tomshw.it. URL consultato il 10 aprile 2012 (archiviato dall'url originale il 18 giugno 2014).
  20. ^ Apple presenta un brevetto per una batteria che non esplode, su gizmodo.it. URL consultato il 10 aprile 2012 (archiviato dall'url originale il 18 settembre 2011).
  21. ^ Dal 2005 la Sanyo (e in seguito altre aziende) produce un tipo di batteria NiMH a bassa autoscarica, il produttore afferma che queste celle conservano il 70-85% della loro capacità in un anno se conservate a 20 °C
  22. ^ a b (EN) Specifiche di batterie agli ioni di litio (PDF), su gpbatteries.com, 29 ottobre 2006 (archiviato dall'url originale il 29 ottobre 2006).
  23. ^ (EN) Abnormal self-discharge in lithium-ion batteries, su pubs.rsc.org, aprile 2018. URL consultato il 14 febbraio 2020.
  24. ^ (EN) Cycle-life model for graphite-LiFePO4 cells, su sciencedirect.com, 15 aprile 2011. URL consultato il 13 febbraio 2020.
  25. ^ (EN) Derating Guidelines for Lithium-Ion Batteries, su mdpi.com, 26 novembre 2018. URL consultato il 13 febbraio 2020.
  26. ^ (EN) Articolo dal sito E-one.com Archiviato l'11 marzo 2007 in Internet Archive.
  27. ^ (EN) Articolo da The Inquirer
  28. ^ Tullo, Alex. "Dell Recalls Lithium Batteries." Chemical and Engineering News 21 Aug 2006: 11
  29. ^ (EN) Safety Last, su nytimes.com.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Controllo di autoritàGND (DE7681721-0 · NDL (ENJA01090550