Tomografia a emissione di positroni

Da Wikipedia, l'enciclopedia libera.
Avvertenza
Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze.
Esculaap4.svg Tomografia a emissione di positroni Esculaap4.svg
Procedura medica ECAT-Exact-HR--PET-Scanner.jpg
Una tipica apparecchiatura per la PET
Tipo Diagnostica medico-nucleare
Anestesia no
Classificazione e risorse esterne
ICD-9 92.0
MeSH D049268
MedlinePlus 003827
Sinonimi
PET

La tomografia a emissione di positroni (o PET, dall'inglese Positron Emission Tomography) è una tecnica di medicina nucleare e di diagnostica medica utilizzata per la produzione di bioimmagini (immagini del corpo). La PET fornisce informazioni di tipo fisiologico, a differenza di TC e RM che invece forniscono informazioni di tipo morfologico del distretto anatomico esaminato. Con l'esame PET si ottengono mappe dei processi funzionali all'interno del corpo.

Descrizione[modifica | modifica wikitesto]

Immagini TC e PET sovrapposte
Schema di un processo di acquisizione PET
Maximum Intensity Projection (MIPS) di una tipica acquisizione total body con 18F-FDG.
Struttura chimica del fluorodesossiglucosio
Vista schematica di un apparato di rilevazione e dell'anello dello scanner PET (qui: Siemens ECAT Exact HR+)
MicroPET per studi su animali

La procedura inizia con l'iniezione di un radiofarmaco formato da un radio-isotopo tracciante con emivita breve, legato chimicamente a una molecola attiva a livello metabolico, detta vettore. Dopo un tempo di attesa, durante il quale la molecola metabolicamente attiva (spesso uno zucchero) raggiunge una determinata concentrazione all'interno dei tessuti organici da analizzare, il soggetto viene posizionato nello scanner. L'isotopo di breve vita media decade, emettendo un positrone. Dopo un percorso che può raggiungere al massimo pochi millimetri,[1] il positrone si annichila con un elettrone, [2] producendo una coppia di fotoni gamma entrambi di energia 511 KeV emessi in direzioni opposte tra loro (fotoni back to back).

Questi fotoni sono rilevati quando raggiungono uno scintillatore, nel dispositivo di scansione, dove creano un lampo luminoso, rilevato attraverso dei tubi fotomoltiplicatori. Punto cruciale della tecnica è la rilevazione simultanea di coppie di fotoni: i fotoni che non raggiungono il rilevatore in coppia, cioè entro un intervallo di tempo di pochi nanosecondi, non sono presi in considerazione. Dalla misurazione della posizione in cui i fotoni colpiscono il rilevatore, si può ricostruire l'ipotetica posizione del corpo da cui sono stati emessi, permettendo la determinazione dell'attività o dell'utilizzo chimico all'interno delle parti del corpo investigate. Lo scanner utilizza la rilevazione delle coppie di fotoni per mappare la densità dell'isotopo nel corpo, sotto forma di immagini di sezioni (generalmente trasverse) separate fra loro di 5 mm circa. La mappa risultante rappresenta i tessuti in cui la molecola campione si è maggiormente concentrata e viene letta e interpretata da uno specialista in medicina nucleare al fine di determinare una diagnosi ed il conseguente trattamento.

I radionuclidi utilizzati nella scansione PET sono generalmente isotopi con breve tempo di dimezzamento, come 11C (~20 min), 13N (~10 min), 15O (~2 min) e soprattutto 18F (~110 min). Per via del loro basso tempo di dimezzamento, i radioisotopi devono essere prodotti da un ciclotrone posizionato in prossimità dello scansionatore PET. Questi radionuclidi sono incorporati in composti normalmente assimilati dal corpo umano, come il glucosio, l'acqua o l'ammoniaca, e quindi iniettati nel corpo da analizzare per tracciare i luoghi in cui vengono a distribuirsi. I composti così contrassegnati vengono chiamati radiotraccianti o radiofarmaci.

Applicazioni[modifica | modifica wikitesto]

La PET è usata estensivamente in oncologia clinica[3] (per avere rappresentazioni dei tumori e per la ricerca di metastasi) e nelle ricerche cardiologiche e neurologiche. Metodi di indagine alternativi sono la tomografia computerizzata a raggi X (TC), l'imaging a risonanza magnetica (MRI), la Risonanza magnetica funzionale (RMF) e la Tomografia Computerizzata a Ultrasuoni e a emissione di singolo fotone.

Ad ogni modo, mentre gli altri metodi di scansione, come la TAC e la RMN permettono di identificare alterazioni organiche e anatomiche nel corpo umano, le scansioni PET sono in grado di rilevare alterazioni a livello biologico molecolare che spesso precedono l'alterazione anatomica, attraverso l'uso di marcatori molecolari che presentano un diverso ritmo di assorbimento a seconda del tessuto interessato. Con una scansione PET è possibile visualizzare e quantificare con discreta precisione il cambio di afflusso sanguigno nelle varie strutture anatomiche (attraverso la misurazione della concentrazione dell'emettitore di positroni iniettato).

Spesso, e sempre più frequentemente, le scansioni della Tomografia a Emissione di Positroni sono raffrontate con le scansioni a Tomografia Computerizzata, fornendo informazioni sia anatomiche e morfologiche, sia metaboliche (in sostanza, su come il tessuto o l'organo siano conformati e su cosa stiano facendo). Per sopperire alle difficoltà tecniche e logistiche conseguenti allo spostamento del paziente per eseguire i due esami ed alle imprecisioni conseguenti, ci si avvale oramai esclusivamente dei tomografi PET-TAC, nei quali il sistema di rilevazione PET ed un tomografo TAC di ultima generazione sono assemblati in un unico gantry e controllati da un'unica consolle di comando. L'introduzione del tomografo PET-TAC ha consentito un grande miglioramento dell'accuratezza e dell'interpretabilità delle immagini ed una notevole riduzione dei tempi di esame.

La PET gioca un ruolo sempre maggiore nella verifica della risposta alla terapia, specialmente in particolari terapie anti-cancro.[3]

La PET è usata anche in studi pre-clinici sugli animali,[4] dove invece le indagini ripetute sullo stesso soggetto sono consentite. Queste ricerche si sono dimostrate particolarmente valide nella ricerca sul cancro, dove si registra un aumento della qualità statistica dei dati e una sostanziale riduzione del numero di animali richiesti per ogni singolo studio.

Una limitazione alla diffusione della PET è il costo dei ciclotroni per la produzione dei radionuclidi di breve tempo di dimezzamento. Pochi ospedali e Università possono permettersi l'acquisto e il mantenimento di questi costosi apparati e quindi la maggior parte dei centri PET è rifornita da fornitori esterni. Questo vincolo limita l'uso della PET clinica principalmente all'uso di traccianti contrassegnati con il 18F, che avendo un tempo di dimezzamento di 110 minuti può essere trasportato ad una distanza ragionevole prima di essere utilizzato. Anche il 68Ga (ottenibile grazie a un generatore) permette di ottenere traccianti in maniera più agevole, mentre il 82Rb è a volte usato per lo studio dell'irrorazione del miocardio.

Utilizzi[modifica | modifica wikitesto]

PET cerebrale
Vasculite dei grossi vasi rilevata con la FDG PET

Quest'analisi strumentale serve per:

Uso della PET in cardiologia[modifica | modifica wikitesto]

Exquisite-kfind.png Per approfondire, vedi Scintigrafia miocardica.

Studio di perfusione[modifica | modifica wikitesto]

Di norma lo studio della perfusione coronarica è eseguito mediante tecniche SPECT in quanto spesso è difficile reperire traccianti a lunga emivita per uso PET. Tale tecnica però presenta indubbi vantaggi, come la possibilità di correggere per l'attenuazione da parte delle strutture anatomiche, una maggior risoluzione spaziale e anche, volendo, una maggior affinità delle molecole radiomarcate con i substrati biologici da visualizzare (spesso le molecole usate in PET sono identiche a quelle fisiologiche). I traccianti PET utilizzati per stimare la perfusione miocardica sono l'acqua marcata con ossigeno 15 (che però ha un'emivita brevissima) e soprattutto il rubidio 82 che ha il grosso vantaggio di non necessitare di un ciclotrone per esse prodotto, ma basta un generatore. Il suo meccanismo di accumulo nei miocardiociti è analogo a quello del tallio 201 utilizzato negli studi a fotone singolo, in quanto dipende anch'esso dalla pompa sodio potassio (il rubidio come il tallio mima il potassio). Il tracciante di perfusione più utilizzato è l'ammoniaca marcata con azoto 13, che ha un'estrazione da parte dei miocardiociti fra il 70% e l'80%, con un meccanismo energia-dipendente non ancora del tutto chiarito. L'ammoniaca è poi utilizzata nella sintesi della glutammina ed è così trattenuta nella cellula. Dato che la captazione di tale tracciante in funzione del flusso mostra un plateau per valori elevati di questo parametro, tale molecola è ottima anche per studi di perfusione stress Vs rest (vedi la voce sulla scintigrafia miocardica). Unica pecca è che la sintesi dell'azoto radioattivo si effettua con un ciclotrone. Nella ricerca di aree ischemiche, data la breve emivita dei farmaci utilizzati, negli studi stress vengono utilizzati stimoli farmacologici (gli stessi degli studi SPECT) di brevissima durata. Anche le tecniche di elaborazione delle immagini e refertazione sono le stesse. A livello del miocardio ibernato è possibile visualizzare aree ipocaptanti nello studio di perfusione, ma al contempo normali nello studio di metabolismo (vedi dopo). Sensibilità e specificità di questo test sono superiori al 95%.

Studio di metabolismo[modifica | modifica wikitesto]

Il cuore è in grado di utilizzare diversi substrati energetici per il suo sostentamento. Di norma utilizza acidi grassi, ma in caso di ischemia può utilizzare anche carboidrati. Tenendo conto di tale assioma, il glucosio marcato con fluoro 18 è il tracciante più utilizzato di routine per gli studi di metabolismo cardiaco (anche grazie al fatto che la sua lunga emivita ne permette il trasporto in luoghi distanti dal ciclotrone di sintesi). Oltre all'ipossia, anche fattori ormonali e la concentrazione del substrato fisiologico in circolo influenzano la captazione dei traccianti. In ogni caso l'FDG è usato per rilevare le aree cardiache ischemiche. Nell'eseguire tale esame si attendono circa 40-60 minuti dopo la somministrazione del radiofarmaco prima di acquisire le immagini per dare tempo alla molecola radioattiva di accumularsi nelle cellule tramite trasporto attivo e conversione in FDG-6-fosfato (che non può proseguire nella glicolisi in quanto in posizione 2 della molecola ha l'atomo di fluoro invece che un ossidrile, quindi si accumula). Dato che la glicemia influenza l'entità della captazione dell'FDG, l'ottenimento di immagini a digiuno mostra solo le aree ischemiche, ma non quelle sane o necrotiche. Per visualizzare bene anche le aree sane di solito si fornisce un carico di glucosio al paziente un'ora prima di somministrare il radiofarmaco. questo ovviamente è un problema anche nei soggetti diabetici, dove le immagini possono non essere ottimali.

Ricerca del miocardio vitale[modifica | modifica wikitesto]

Gli studi di perfusione non sempre sono in grado di distinguere, fra le aree ipoperfuse, quelle ancora vitali (miocardio ibernato) da quelle necrotiche. Le aree vitali, se individuate in tempo, possono essere riportate in funzione con adeguato intervento di angioplastica coronarica anche con un recupero dell'80%; cosa che avviene in meno del 10% dei casi nelle aree non rilevate con questa metodica. Di norma, il consumo di glucosio e il flusso a livello delle aree sane e di quelle necrotiche sono correlati fra loro e omogenei (cosiddetto match). Nelle zone ibernate invece la captazione glicidica è conservata, ma non il flusso (cosiddetto mismatch). Nelle aree di miocardio stordito (quadro che si verifica ad esempio dopo una trombolisi o un'angioplastica su una zona ischemica) il flusso è conservato ma la captazione dell'FDG è alterata (reverse mismatch) a causa delle alterazioni metaboliche legate all'evento acuto. Situazioni analoghe si possono rilevare a livello settale in pazienti affetti da blocco di branca sinistra (a causa dell'asincronia settale che porta a compressione dei vasi tipica di questa patologia). Questa metodica è il gold standard nel predire il recupero funzionale del miocardio e nella stratificazione prognostica dei pazienti con miocardio vitale disfunzionante, specie nei soggetti con bassa frazione di eiezione.

Uso della PET in oncologia[modifica | modifica wikitesto]

captazione ossea dovuta ad artrosi (vedi puntatore)
tessuto adiposo bruno visibile in una FDG-PET
captazione a livello dello stomaco dovuta a una gastrite
captazione muscolare fisiologica in una FDG PET

La PET in oncologia ha le seguenti indicazioni:

  • Stadiazione e ristadiazione a fine terapia
  • monitoraggio delle terapie antineoplastiche
  • diagnosi differenziale fra benignità o malignità delle lesioni
  • ricerca di tumori primitivi occulti (tumori che hanno già dato metastasi, ma che hanno origine sconosciuta)
  • ricerca del miglior punto di una lesione da cui effettuare una biopsia
  • caratterizzazione metabolica delle lesioni neoplastiche
  • pianificazione di trattamenti radioterapici

I traccianti utilizzabili in oncologia sono molti, ma il più diffuso è il 18fluorodesossiglucosio, cioè glucosio che in posizione 2, invece di un ossidrile, presenta un atomo di fluoro 18 emettitore di positroni. Tale farmaco viene captato di solito in maggior misura dai tessuti neoplastici in quanto sono metabolicamente più attivi, sia soprattutto per il fatto che spesso la loro principale via metabolica per il sostentamento energetico è la glicolisi anaerobia. Per ragioni simili, neoplasie ben differenziate o mucinose captano poco questo tracciante, inoltre anche il livello glicemico influisce ovviamente nella captazione del tracciante in quanto il glucosio "fisiologico" compete con l'FDG per entrare nelle cellule (particolare attenzione viene quindi rivolta ai pazienti diabetici, la cui glicemia deve essere sotto i 200 mg/dl). Oltre a ciò è anche necessario evidenziare come anche i tessuti ove è in atto il fenomeno dell'infiammazione captano avidamente L'FDG tramite le stesse cellule della flogosi (specie i macrofagi) e lo stesso vale per la muscolatura, sia scheletrica che striata (specie quella intestinale); col rischio che l'esame mostri risultati falsi positivi, per fortuna spesso contenibili abbinando alla scansione PET una scansione TC o RMN. Altro tessuto avidamente captante l'FDG è il tessuto adiposo bruno. In generale, l'indagine PET con FDG non è raccomandata nel follow up del paziente oncologico asintomatico o senza segni di ripresa di malattia (in quanto gravata da numerosi falsi positivi, specie in sedi esposte ad insulti flogistico-infettivi ed intestinale).

Valutazione semi-quantitativa della captazione regionale[modifica | modifica wikitesto]

Volume di Interesse ricavato con una workstation includendo nella regione tutti i voxel con un SUV fino al 42% del massimo presente nella VOI cubica di riferimento

La valutazione delle aree ipercaptanti sulle immagini di norma viene fatta in maniera qualitativa da medici esperti; tuttavia esistono dei casi dubbi in cui un'analisi semi-quantitativa può essere utile. Il principale parametro utilizzato in tal senso è il SUV (Standardized Uptake Value) che si può calcolare su ogni area dubbia mediante la seguente formula:

SUV=(Attività dell'area interessata[ Bq ]/massa dell'area interessata [ g ])/Attività somministrata [Bq]/Massa corporea [g])

Tale rapporto mostra quante volte capta di più (o di meno) l'area interessata rispetto a quanto capterebbe un'area di uguale massa. Il calcolo del SUV poi può essere ulteriormente corretto per altri parametri, come la superficie corporea o la massa magra. Altri modelli più accurati si basano sull'analisi della cinetica di captazione, rilevata tramite acquisizioni e misurazioni del pool circolante seriate.

Molti studi che valutano la risposta alle terapie citostatiche si avvalgono di misurazioni seriate del SUV in più scansioni nel tempo sulle lesioni per quantificare la riuscita dei trattamenti. Questo perché la PET ha una risoluzione spaziale minima di un cubo di 5 mm di lato, e quindi consente un'ottima valutazione (anche se non garantisce la scomparsa di malattia sotto questo valore) che arriva a fare stime sul singolo grammo di tessuto. Di solito come criterio si considera la riduzione percentuale del valore fra le varie misurazioni, che ovviamente devono essere il più simili possibile come attività somministrata, tempo di acquisizione delle immagini dal momento dell'iniezione e specifiche tecniche della scansione stessa.

Un altro criterio proposto per valutare la risposta alla terapia è il PERCIST (Positron Emission tomography Response Criteria In Solid Tumor).

Ricerca di tumori primitivi occulti[modifica | modifica wikitesto]

La PET con FDG è usata per rilevare le lesioni di tumori primitivi nel caso in cui queste non siano rilevabili con altre tecniche (che dipendono dall'istotipo sospettato) e nel caso il sospetto non sia di tumore neuroendocrino (in tali casi si usano esami specifici come l'Octreoscan o la PET con DOTATOC). Tale metodica riesce nel suo obiettivo nel 37% dei casi in media; con sensibilità e specificità medie dell'84%.

Ricerca di seconde neoplasie[modifica | modifica wikitesto]

In una percentuale di pazienti (5-8%) è possibile rinvenire seconde neoplasie nella loro storia clinica. La PET, essendo un'indagine che al contrario di altre metodiche di imaging, analizza sempre tutto il corpo; può spesso evidenziarle in stadio precoce consentendo una terapia meno invasiva. Tale analisi però non è raccomandata come indagine di screening nei pazienti oncologici in quanto è facile confondere una seconda neoplasia con una metastasi del primo tumore, così come con lesioni funzionali o infiammatorie. Per tali motivi la metodica è comunque gravata da una buona quota di falsi positivi, che porterebbero ed eseguire esami o interventi inutili.

Pianificazione di trattamenti radioterapici[modifica | modifica wikitesto]

Prima di effettuare trattamenti radioterapici è necessario definire i volumi da trattare. Solitamente tale operazione è svolta con l'ausilio di immagini TC o RMN che, in taluni casi, non riescono a raggiungere un'accuratezza sufficiente. La PET e la SPECT, fornendo indicazioni funzionali sui tessuti che cambiano a seconda del tracciante scelto (metabolismo, ipossia, angiogenesi, apoptosi, espressione di determinati recettori,...), consentono altri approcci nella definizione dei suddetti volumi, anche con maggiore precisione all'interno delle stesse aree neoplastiche. Al momento sono in corso diversi studi sull'argomento, per numerosi istotipi e con valutazione delle immagini sia qualitativa che semi-quantitativa mediante SUV. Altro problema è dovuto ai movimenti del paziente e del tumore; ad esempio a causa alla respirazione. Per risolvere sono in studio dei protocolli che si avvalgono di scansioni sincronizzate coi movimenti del torace (gating).

Uso della PET nei differenti istotipi tumorali[modifica | modifica wikitesto]

Tumori polmonari e del mediastino[modifica | modifica wikitesto]

Nodo polmonare 1 cm di diametro rilevato prima in una radiografia del torace e poi alla TC e studiato mediante FDG PET per sospetto di lesione maligna. L'esame ha mostrato captazione abnorme in tale sito e a livello della giunzione gastro-esofagea. Entrambe le sedi si sono rivelate essere localizzazioni di un linfoma non Hodgkin.

La PET è utilizzata nella valutazione di malignità dei noduli polmonari. È noto che noduli che presentano un SUV >2,5 hanno un'alta probabilità di essere maligni. Limitazione importante all'impiego di quest'esame è il fatto che spesso le lesioni sono più piccole di 1 cm (quindi il SUV è spesso sottostimato o la lesione non è visibile) Il limite di risoluzione a un centimetro, maggiore della risoluzione delle comuni macchine, è dovuto ai movimenti respiratoti del paziente che fanno perdere precisione alle immagini. Ancora più spesso molte lesioni infiammatorie sono positive alla PET (e possono portare a falsi positivi). Per tale motivo la PET con FDG non consente ad esempio di eseguire una certa diagnosi differenziale fra lesioni neoplastiche ed infettive o infiammatorie in genere. Inoltre molti istotipi ben differenziati captano poco il tracciante. Un ruolo molto importante nella gestioni dei tumori polmonari non a piccole cellule la PET lo occupa nella loro stadiazione. Specie per la rilevazione dei linfonodi mediastinici colpiti (anche con diametro < 1 cm) così come delle metastasi a distanza. La metodica medico-nucleare è invece meno accurata nel definire il parametro T (relativo alla lesione primitiva), Mentre ha un ruolo importante anche nel follow up dei pazienti durante e dopo la terapia, dove consente spesso di rilevare, nei soggetti fumatori, seconde neoplasie dovute a questo fattore di rischio. Per quanto riguarda i tumori a piccole cellule, la PET anche qui ha mostrato una buona accuratezza, specie nell'individuazione delle (purtroppo frequenti) metastasi cerebrali di questo tumore. in tali casi però il radiofarmaco di scelta da utilizzare dovrebbe essere la fluoro18tirosina per ridurre il fondo. Nella valutazione della risposta ai trattamenti si è visto che la PET in questi casi è superiore del 20-35% rispetto a TC ed RMN, specie nel differenziare le recidive dalla fibrosi post-trattamento. È comunque necessario far trascorrere un po' di tempo prima di eseguire l'esame per ridurre i risultati falsi-positivi da residui infiammatori post-terapia. Almeno 3 mesi dal termine delle terapie radianti ed almeno 3 settimane dalla chemioterapia. Da ricordare la ridotta sensibilità della metodica per alcune forme di tumore polmonare non a piccole cellule come il carcinoma bronchiolo-alveolare e nel caso dei tumori neuroendocrini, specie se ben differenziati.

Altro tumore polmonare che la PET riesce a distinguere bene dalle lesioni benigne della pleura è il mesotelioma (che capta molto bene il radiodeossiglucosio). L'esame è infatti molto usato sia nella valutazione post terapia sia nella ricerca di metastasi e stadiazione. Anche la prognosi correla col quadro PET. Un SUV <10 e un istotipo epiteliale correlano con una migliore aspettativa per il paziente. La principale pecca della PET anche in questo caso è la bassa risoluzione spaziale che può portare a falsi negativi, così come la presenza di processi infiammatori che può dare falsi positivi. In generale, la sensibilità della metodica è dell'83-85%, mentre la specificità varia dal 75% all'82%. Anche la presenza di linfonodi metastatici extrapleurici e di metastasi ad altri organi indica una prognosi peggiore. Oltre al SUV, altri parametri ricavati con speciali algoritmi si sono dimostrati più efficaci nello stimare la risposta alle terapie, come il Volume Glicolitico Totale (TGV) e la Glicolisi Totale della Lesione (TLG).

Anche nel Timoma lo studio PET può essere utile.

Neoplasie ematologiche[modifica | modifica wikitesto]

localizzazione di linfoma di Hodgkin

I linfomi sono i tumori ematologici più spesso analizzati mediante l'imaging PET, che è usata per la stadiazione della patologia sia pre che post-terapia (stabilendo se la risposta è stata completa, parziale o non c'è stata, e così influenzando i successivi trattamenti). I linfomi che mostrano captazione dell'FDG più intensa sono il Linfoma di Hodgkin e il linfoma diffuso a grandi cellule B; meno il linfoma follicolare e linfoma mantellare. Altri istotipi sono invece definiti "indolenti" (in quanto meno aggressivi) e captano meno il radiofarmaco (esistono comunque anche altri istotipi aggressivi, ma poco captanti). Questo dato va tenuto ovviamente presente durante la refertazione e il confronto pre-post terapia. In tal proposito, le linee guida consigliano di riutilizzare la PET nella ristadiazione delle forme poco captanti solo se la PET iniziale era positiva. Analogamente per le forme più captanti, la scomparsa di tutte le aree visualizzate all'indagine pre-terapia in quella post è considerata indice di remissione completa. Per ridurre la captazione dovuta all'infiammazione post-trattamento, gli esami post-terapia devono essere eseguiti almeno 3 settimane dopo l'ultimo trattamento chemioterapico e almeno 3 mesi dopo l'ultimo radioterapico, anche se esistono in studio protocolli di rivalutazione durante la terapia stessa per monitorarne gli effetti. In tali casi sembra, almeno per i linfomi di Hodgkin, che la negativizzazione di questa interim PET correli con la prognosi dei pazienti. Non esistono ancora criteri temporali standard invece per la valutazione di malattia post immunoterapia e terapia radiometabolica. Nella refertazione, secondo le linee guida, l'analisi delle immagini anche solo qualitativa, positiva per aree ipercaptanti che non siano quelle "fisiologiche" (tessuto adiposo bruno, muscoli, anse intestinali, vie urinarie....) fa propendere per positività alla diagnosi. Una captazione moderata e diffusa, simile a quella del sangue mediastinico, residua post terapia a livello di masse voluminose con diametro oltre i 2 cm fa invece pensare di più a un esame negativo. Il concetto contrario vale invece se la captazione di tali aree è superiore a detto limite. Inoltre un'ipercaptazione lieve post-terapia a livello delle aree precedentemente segnalate spesso persiste anche per settimane dal termine dei trattamenti ed è spesso dovuta all'infiammazione dei tessuti coinvolti. Anche le nodularità mediastiniche ipercaptanti con diametro oltre i due cm sono da considerare positive, mentre a livello polmonare ciò è vero se le dimensioni sono oltre gli 1,5 cm e la captazione è maggiore del sangue mediastinico. Sempre a livello polmonare, lesioni minori di 1,5 cm non sono caratterizzabili in maniera adeguata. Stesso discorso vale pere la comparsa di lesioni polmonari nel post terapia (spesso sono reazioni flogistiche). Anche una captazione nella milza maggiore di quella presente nel fegato indica localizzazione splenica della malattia (è comunque presente anche nei pazienti trattati con citochine). Lo stesso dicasi per lesioni multifocali a livello del midollo osseo; mentre una captazione diffusa allo stesso livello spesso rappresenta spesso solo una reazione ai trattamenti. La PET comunque non è in grado di rilevare coinvolgimenti lievi o moderati a livello del midollo; se c'è tal sospetto è bene quindi eseguire una biopsia osteomidollare.

Anche la ricerca delle lesioni del mieloma multiplo può venir fatta usando la PET con FDG o con fluoro 18 desossi L -timidina (FLT, tale tracciante viene captato in maggior quantità dalle cellule in proliferazione) che, al contrario di TC ed RMN, può vedere le componenti corticale e midollare della malattia insieme.

Carcinoma mammario[modifica | modifica wikitesto]

metastasi ossea di carcinoma mammario a livello della scapola destra

Con questa forma neoplastica la PET è indicata nella stadiazione pre-operatoria della malattia e nella ricerca di recidive e metastasi sia a distanza di tempo che nel post terapia. La captazione di questa forma tumorale è molto variabile, perciò l'indagine medico-nucleare è poco utile nelle fasi precoci di malattia, mentre acquista utilità nella stadiazione delle forme localmente avanzate (specie per la valutazione linfonodale) e anche nella ricerca di metastasi (sensibilità vicina al 100% e specificità del 98%. Nel 13% dei casi le metastasi sono di nuova osservazione. La classificazione TNM nel post-PET cambia nel 42% dei casi). Da ricordare come le tecniche PET hanno una risoluzione spaziale che non va sotto i 5 mm; quindi possono essere non rilevate lesioni più piccole di questo cut-off. Nel follow up delle pazienti la PET non è raccomandata se non nel sospetto di recidiva di malattia. Altra categoria di pazienti invece in cui l'esame è molto utile è quella che ha subito interventi di ricostruzione mammaria, ove vede bene le recidive sulla parete toracica e sul plesso brachiale. La PET è anche usata per osservare l'effetto delle terapie neoadiuvanti e, usando traccianti appositi, anche per stabilire la presenza di recettori per gli estrogeni sulle cellule tumorali (ad esempio usando il fluoro 18 estradiolo o il fluoro 18 tamoxifene). inoltre è noto che, nei pazienti che rispondono bene alla terapia ormonale, la PET con FDG può rilevare un aumento della captazione denominato flare-F18-FDG. Ulteriori studi sono in corso per verificare l'effettiva utilità di questo dato in clinica.

Melanoma[modifica | modifica wikitesto]

melanoma metastatico

La PET è più sensibile di altre metodiche nella stadiazione dei pazienti affetti da questa patologia in stadi avanzati (IV) assieme alle indagini TC ed RMN. Nelle malattie localizzate e negli stadi bassi (I e II) invece ha maggiori falsi positivi (l'analisi del linfonodo sentinella in tali casi è l'indagine di scelta) mentre nello stadio III la metodica è consigliata per controllare che la malattia non abbia altre localizzazioni. Le indicazioni per il controllo post terapia sono limitate dalla spesso bassa efficacia di questa; inoltre in caso di sospetto clinico di metastasi la decisione di eseguire l'esame va ponderata caso per caso.

Carcinomi della mucosa orale[modifica | modifica wikitesto]

La PET in questi casi è impiegata nella stadiazione. Le metodiche TC ed RMN sono preferite nell'analisi del tumore primitivo in quanto hanno una migliore risoluzione anatomica, mentre la PET è utilizzata soprattutto per la ricerca di metastasi linfonodali o ad altri organi non rilevabili con le 2 metodiche citate prima, specie nelle forme localmente avanzate. Tuttavia, anche la PET non è in grado di rilevare le micrometastasi linfonodali (per questo a tal riguardo è più affidabile la tecnica del linfonodo sentinella)[5][6]. Per la valutazione post terapia e la ricerca di recidive la metodica di scelta è l'endoscopia con biopsia, abbinata a TC o RMN; la PET infatti ha una specificità in taluni casi più bassa (varia dal 64% al 100%) a causa dei processi flogistici successivi alle terapie. Per tale ragione, il periodo più indicato per effettuare una scansione PET nei soggetti trattati è dopo 1-4 mesi, anche se sono necessari ulteriori studi per avere dati certi sull'utilità di questa metodica. La PET è anche utile per identificare tumori primitivi non visibili a TC o RMN nel caso siano state rilevate solo le metastasi linfonodali, così come eventuali secondi tumori (detti simultanei se compaiono assieme a quello già rilevato o entro un mese, sincroni se si manifestano entro 6 mesi dal primo rilevato o metacroni se si notano oltre i 6 mesi).

Tumori tiroidei[modifica | modifica wikitesto]

La diagnosi e la terapia dei tumori tiroidei differenziati (carcinoma papillifero) si avvale da anni dell'isotopo 131 dello iodio. Questa sostanza, emettendo sia raggi gamma sia particelle beta meno, è utilizzato sia in campo diagnostico sia in terapia ed ha cambiato radicalmente la prognosi di questi pazienti, rendendola molto favorevole nella maggior parte dei casi. Esiste anche l'isotopo 124 dello iodio, che è un emettitore di positroni (quindi utilizzabile per indagini PET); ma dato che la PET con questa sostanza da risultati sovrapponibili alla scintigrafia tiroidea con iodio-131 e l'isotopo 124 da un'emissione meno "pulita" in positroni, il suo uso è molto limitato. I tumori non differenziati invece spesso non captano lo iodio; in tali casi la PET con FDG si è dimostrata molto utile nella ricerca delle metastasi e nel ricercare la ripresa di malattia dopo l'intervento sul tumore primitivo (si esegue di solito se il paziente tireotomizzato mostra in circolo la presenza di tireoglobulina). In tali casi spesso si è notato che la captazione del radioiodio da parte delle cellule tumorali è inversamente proporzionale all'espressione del trasportatore del glucosio GLUT1 sulla membrana cellulare (questo fenomeno è chiamato flip-flop). Sembra anche che l'esame PET aumenti la propria sensibilità quando i livelli in circolo di TSH sono elevati. Questo dato potrebbe essere dovuto al fatto che l'ipotiroidismo diminuisce l'attività metabolica di tutti i tessuti corporei, abbassando il livello di fondo delle immagini, così come a una possibile stimolazione dello stesso TSH sulle cellule tumorali. Anche per il carcinomi midollare ed anaplastico la PET con FDG si è dimostrata utile per la stadiazione iniziale sui pazienti.

PET con 68Ga DOTATOC in paziente con tumore neuroendocrino. La TC da sola non ha rilevato alcuna lesione

Per la forma midollare la PET è usata anche nella ricerca di recidive e metastasi. Inoltre, essendo questa forma neoplastica parte della grande famiglia dei tumori neuroendocrini; lo studio con 68Ga-DOTATOC o altri farmaci analoghi della somatostatina può essere utile (ciò vale anche per i tumori all'origine ben differenziati che poi perdono la capacità di captare il radioiodio). La positività all'esame con DOTATOC poi può essere sfruttata anche per effettuare terapie radiometaboliche mirate

Carcinoma dell'esofago[modifica | modifica wikitesto]

La PET con FDG è principalmente utilizzata nella stadiazione, specie per rilevare l'interessamento dei linfonodi mediastinici e del tripode celiaco (se queste stazioni sono interessate, il tumore è in stadio avanzato e la chirurgia curativa non è più possibile). Altri usi importanti riguardano la valutazione di efficacia della terapia neoadiuvante e la pianificazione dei trattamenti radioterapici.

Carcinoma gastrico[modifica | modifica wikitesto]

La stadiazione di queste forme tumorali è più spesso fatta mediante TC, in quanto la captazione dell'FDG da parte di questo tipo di tumori spesso è bassa (quindi è bassa anche la sensibilità della metodica). Anche la sede e la dimensione del tumore primitivo influenzano l'accuratezza. In generale, le forme meno captanti sono quelle con istotipo ad anello con castone. In compenso la specificità della metodica nel rilevare metastasi linfonodali è alta, mentre la stessa è ancora poco utile nel rilevare metastasi a distanza. Un ruolo importante in queste neoplasie la PET lo svolge nella valutazione delle terapie neoadiuvanti, in quanto un quadro di remissione all'esame PET fa propendere per una prognosi migliore; così come l'assenza di recidive post-trattamento. Un tracciante alternativo all'FDG che presenta un'altissima sensibilità nel rilevare il tumore primitivo (vicina al 100%) è la fluoro 18 L Timidina (FLT).

GIST[modifica | modifica wikitesto]

Una PET con FDG negativa il giorno dopo la somministrazione del farmaco specifico per questa patologia (imatinib) correla con una prognosi molto favorevole.

Carcinoma del colon-retto[modifica | modifica wikitesto]

stadiazione di carcinoma del colon mediante FDG PET

La stadiazione pre-terapia con FDG PET è di norma eseguita nei pazienti con interessamento rettale in quanto sono gli unici affetti da questo istotipo tumorale che possono beneficiare di una terapia neoadiuvante. Altro campo di impiego di questa tecnica è la ricerca di metastasi a distanza non rilevabili con la TC (questo uso permette di modificare lo stadio dei pazienti in un terzo dei casi). Altra indicazione consiste nella ristadiazione post trattamento in caso di presenza dei segni di represa della malattia (come l'elevazione del CEA). La superiorità della PET rispetto alle altre tecniche di imaging è dovuta al fatto che questo istotipo presenta precoci alterazioni metaboliche. Questo permette di avere una sensibilità maggiore rispetto alla TC con una simile specificità. Un altro vantaggio consiste anche nella migliore capacità di rilevare lesioni in sedi atipiche (se le metastasi sono anche extraepatiche, la resezione di quelle presenti nel fegato spesso è inutile). In generale, la sensibilità della tecniche è anche influenzata dalle dimensioni delle lesioni (massima se il diametro è oltre i 3 cm) ed è anche possibile fare analisi seriate pre e post terapia misurando i SUV delle lesioni per valutare la risposta ai trattamenti. I limiti della metodica invece si notano nell'identificare lesioni da istotipi poco captanti l'FDG (come l'adenocarcinoma mucinoso), nella possibilità di rilevazione di falsi positivi a livello delle anse intestinali (che captano glucosio fisiologicamente) e a livello di numerose lesioni infiammatorie non neoplastiche. L'unione dei risultati forniti dalla PET con quelli forniti dall'esame TC consente di ridurre questi errori.

Carcinoma del pancreas[modifica | modifica wikitesto]

La stadiazione dei pazienti con questo tumore è indispensabile per capire se questi sono candidabili all'intervento chirurgico di asportazione, e la FDG PET riveste un ruolo importante in questo processo, con usa sensibilità che, per le lesioni intrapancreatiche rilevate occasionalmente alla TC, varia da circa 80 a quasi il 100% e una specificità che varia da circa 50% fino anche al 100%. Tale valore varia in funzione delle lesioni: se queste sono più piccole di 2 cm infatti captano meglio il tracciante, cosa che non avviene invece se sono più grandi di 4 cm (in tali casi la parte centrale di queste può essere ipocaptante, ed è migliore la TC). Anche per le lesioni cistiche la PET è utile nel rilevare eventuale malignità. In conclusione: La TC per questo istotipo è indispensabile per valutare l'estensione anatomica della malattia, mentre la PET ha un ruolo preponderande nel cercare interessamento in altri organi a distanza (non a livello peritoneale e linfonodale, ove ha bassa sensibilità) da parte della neoplasia (spesso è in grado di rilevare lesioni epatiche non visibili con la TC). Altri usi riguardano la valutazione della chemioterapia neoadiuvante eventualmente condotta e della radioterapia intraoperatoria.

Carcinoma epatocellulare[modifica | modifica wikitesto]

Tipicamente questo istotipo tumorale non capta molto l'FDG, per tali motivi la PET con questo tracciante di norma non è usata nel seguire questo istotipo; però l'ammontare di questa captazione correla con l'aggressività e la proliferazione del tumore, e quindi con la prognosi del paziente. Altri traccianti proposti per valutare questo istotipo sono la fluoro-colina e il C-acetato

Colangiocarcinoma[modifica | modifica wikitesto]

La PET nei pazienti affetti da questa patologia è usata in fase di stadiazione per la ricerca di metastasi a distanza (ove è superiore a TC ed RMN) e anche nell'analisi del tumore primitivo (ove le metodiche di scelta sono la TC e soprattutto la Colangio-RMN; ma la PET presenta una maggiore specificità e una sensibilità simile alla TC).

Carcinoma dell'ovaio[modifica | modifica wikitesto]

La PET nelle pazienti affette da questa patologia è utilizzata soprattutto nel sospetto di recidiva di malattia post-trattamento. In tali casi la sensibilità varia dall'80% a valori vicini al 100% a seconda delle dimensioni delle lesioni e della loro sede (è minore se il loro diametro è minore di 1 cm e se sono localizzate nel peritoneo invece che nel retroperitoneo o nella pelvi). In ogni caso, anche in presenza di PET negativa, va sempre comunque condotta in questi casi una laparotomia esplorativa (detta di second look). Ciò non è necessario invece in caso di PET positiva. In conclusione, la misurazione dei livelli di CA-125 ha una specificità maggiore della PET, che ha sua volta è più accurata di TC ed RMN.

Carcinoma della cervice uterina[modifica | modifica wikitesto]

La PET nelle pazienti affette da questa patologia è utilizzata soprattutto in fase di stadiazione, per rilevare metastasi a distanza e linfonodali (compito in cui è superiore rispetto a TC ed RMN). Tale tecnica è utilizzata anche nella ricerca di recidive di malattia, nella valutazione dei trattamenti effettuati tramite misurazioni dei SUV delle lesioni, e per effettuare biopsie mirate o trattamenti sia radioterapici sia di altro tipo su lesioni ipercaptanti l'FDG.

Carcinoma prostatico[modifica | modifica wikitesto]

metastasi osteoaddensante da carcinoma prostatico rilevata mediante PET con colina.

La PET con FDG di norma non è utilizzata nel processo diagnostico di questa forma tumorale in quanto tale tracciante a livello del tumore presenta una captazione simile a quella della prostata sana. Inoltre anche le metastasi non captano il tracciante e l'escrezione urinaria dello stesso interferisce con la visualizzazione dell'organo. Uniche rare eccezioni possono essere la valutazione dei tumori scarsamente differenziati (con un alto grado di Gleason all'esame istologico; che possono essere ipercaptanti), i casi di malattia non più rispondenti alla terapia ormonale e le metastasi ossee molto precoci in cui non si è ancora instaurata reazione da parte del tessuto colpito. (in tali rari casi la PET da migliori risultati della scintigrafia ossea). Ancora, si sa dalla letteratura che la captazione dell'FDG da parte del tumore è correlata negativamente con la concentrazione di androgeni; quindi un possibile ruolo di questo esame con questo tracciante potrebbe essere la valutazione della terapia di deprivazione androgenica. Altri radiofarmaci utilizzati nello studio di questo tumore includono: il fluoro-18 elementare (utilizzato per lo studio delle metastasi ossee), e la C11-colina (avidamente captata dalle cellule di carcinoma che sono caratterizzate da un aumento dell'espressione del gene per la colina chinasi, in quanto la colina è utilizzata nella costruzione delle membrane cellulari ed è quindi indispensabile nel processo mitotico). Tale farmaco marcato è inoltre poco secreto a livello renale ed è quindi usato nella ricerca di metastasi, sia linfonodali che ad altri organi. Il suo uso però è problematico in quanto il carbonio 11 tende a decadere velocemente (quindi la molecola marcata va sintetizzata in un impianto molto vicino al luogo di iniezione al paziente), inoltre tende ad accumularsi in molti organi addominali (fegato, reni, milza e pancreas) disturbando la visualizzazione di questo distretto. È stata anche resa disponibile la colina marcata con fluoro 18 che non presenta più i problemi legati al veloce decadimento, ma ha come svantaggio una maggiore escrezione urinaria, disturbando la visualizzazione della pelvi.

Carcinoma a cellule renali[modifica | modifica wikitesto]

La PET è poco utilizzata nello studio di questo tumore, sia perché capta poco l'FDG sia perché l'escrezione renale del radiofarmaco disturba la visualizzazione del parenchima renale. In teoria, un'alta captazione di FDG a livello di una lesione renale spesso depone per una sua malignità, ma l'assenza di lesioni ipercaptanti non indica assenza di patologia neoplastica. In generale quindi il suo uso non è raccomandato di routine ed è riservato solo nei pochi casi di tumori avanzati dubbi come aiuto nella valutazione.

Seminoma[modifica | modifica wikitesto]

Nei pazienti affetti da questa forma tumorale la PET è utile nella valutazione della risposta alle terapie e nella ricerca di recidive. L'esame non è dirimente nella stadiazione e nello studio degli altri tumori della linea germinale.

Tumori cerebrali[modifica | modifica wikitesto]

La PET è utilizzata:

  • per eseguire biopsie mirate sulle lesioni neoplastiche
  • stimare il grading della neoplasia (la captazione dell'FDG è direttamente correlata con questo parametro)
  • in fase di ristadiazione dopo asportazione chirurgica delle lesioni

La metodica però ha dei limiti in quanto anche i neuroni cerebrali captano avidamente l'FDG (quindi alcune forme tumorali di basso grado rischiano di non essere visualizzate). Inoltre anche alcune lesioni benigne (come il meningioma) captano avidamente il tracciante. Per tali motivi sono stati sintetizzati e sono in studio dei traccianti alternativi. Uno dei più usati nei centri ove è disponibile un ciclotrone è la metionina marcata con carbonio 11 (un marker che rileva aree ad aumentata sintesi proteica, tipica delle neoplasie) in grado di rilevare sia lesioni primitive del cervello sia secondarie (e che presenta una bassa captazione a livello dei tessuti cerebrali sani). La PET con questi traccianti è usata soprattutto nella ricerca di recidive e nella stima di sopravvivenza dei pazienti (che diminuisce all'aumentare della captazione).

Sarcomi e tumori dell'apparato locomotore[modifica | modifica wikitesto]

La captazione dell'FDG da parte di queste lesioni neoplastiche dipende molto dall'istotipo; con molte differenze fra le varie tipologie (alcuni captano molto, altri molto poco). La PET nei sottotipi tumorali captanti (osteosarcoma, Sarcoma di Ewing, meno il condrosarcoma) è usata a volte in associazione ad altre tecniche per: definire il grading metabolico delle lesioni, guidare le biopsie, stadiare le lesioni e ristadiarle dopo terapia.

Rischi[modifica | modifica wikitesto]

La scansione non è invasiva, ma coinvolge ad esposizioni di radiazioni ionizzanti. La dose totale di radiazione è significante, di solito circa 5–7 mSv (milli-sievert). Comunque, nella pratica moderna, una scansione combinata di PET/CT è quasi sempre utilizzata, e per una scansione PET/CT, l'esposizione di radiazione può essere sostanzialmente attorno ai 23–26 mSv (per una persona di 70 kg, la dose è più alta per corpi di maggiore peso).[7] Comparato al livello di classificazione per chi lavora nel campo delle radiazioni nel Regno Unito di 6 mSv, si deve trarre che l'uso della PET necessita di una giustificazione più che sufficiente. Ciò si può anche comparare con la radiazione di fondo media annuale di 2.2 mSv nel Regno Unito, 0.02 mSv per una radiografia X al torace e 6.5–8 mSv per una scansione del torace, secondo la rivista Chest e ICRP.[8] D'altro canto secondo l'associazione IFALPA nel 1999 si dichiarò che un operatore di volo riceverebbe una dose di radiazioni di 4–9 mSv per anno.[9]

Note[modifica | modifica wikitesto]

  1. ^ Michael E. Phelps, PET: physics, instrumentation, and scanners, Springer, 2006, pp. 8–10.
  2. ^ PET Imaging, GE Healthcare.
  3. ^ a b Young H, Baum R, Cremerius U, et al., Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. in European Journal of Cancer, vol. 35, nº 13, 1999, pp. 1773–1782, DOI:10.1016/S0959-8049(99)00229-4, PMID 10673991.
  4. ^ Rat Conscious Animal PET
  5. ^ (EN) Schöder H, et al, 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI in J Nucl Med, vol. 47, nº 5, Society of Nuclear Medicine and Molecular Imaging, maggio 2006, pp. 755-762, PMID 16644744. URL consultato il 16 febbraio 2013.
  6. ^ (EN) Ng SH, 'Yen TC, Liao CT, Chang JT, Chan SC, Ko SF, Wang HM, Wong HF, 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation in J Nucl Med, vol. 46, nº 7, Society of Nuclear Medicine and Molecular Imaging, luglio 2005, pp. 1136-1143, PMID 16000282. URL consultato il 16 febbraio 2013.
  7. ^ Brix G, Lechel U, Glatting G, et al., Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations in J. Nucl. Med., vol. 46, nº 4, aprile 2005, pp. 608–13, PMID 15809483.
  8. ^ de Jong PA, Tiddens HA, Lequin MH, Robinson TE, Brody AS, Estimation of the radiation dose from CT in cystic fibrosis in Chest, vol. 133, nº 5, maggio 2008, pp. 1289–91; author reply 1290–1, DOI:10.1378/chest.07-2840, PMID 18460535.
  9. ^ Air crew radiation exposure—An overview, Susan Bailey, Nuclear News (a publication of American Nuclear Society), January 2000.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Bibliografia[modifica | modifica wikitesto]

Dondi-Medicina nucleare nella pratica clinica ISBN 88-555-2728-2

Volterrani-Fondamenti di medicina nucleare ISBN 9788847016842