Simboli 3j

Da Wikipedia, l'enciclopedia libera.

I simboli 3j, noti anche come simboli 3j di Wigner e come simboli 3-jm, sono funzioni aventi dominio contenuto nell'insieme delle sestuple di numeri seminteri ed a valori razionali, definibili come varianti dotate di maggiore simmetria dei coefficienti di Clebsch-Gordan:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle.

Questi simboli sono stati introdotti da Eugene Wigner e riguardano i collegamenti tra rappresentazioni del gruppo delle rotazioni.

Regole di selezione[modifica | modifica sorgente]

Il simbolo 3j è diverso da 0 se e solo se sono soddisfatte tutte le condizioni che seguono:

\forall i=1,2,3 : |m_i| \le j_i e j_i - m_i sono interi
m_1+m_2+m_3=0
j_1+j_2 + j_3 è intero
|j_1-j_2|\le j_3 \le j_1+j_2.

Relazione inversa[modifica | modifica sorgente]

L'espressione dei coefficienti di Clebsch-Gordan nei simboli 3j si ottiene osservando che j1 - j2 - m3 è un numero intero ed effettuando la sostituzione  m_3 \rightarrow -m_3


\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3}\sqrt{2j_3+1}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & -m_3
\end{pmatrix}.

Proprietà di simmetria[modifica | modifica sorgente]

Le relazioni di simmetria sono sensibilmente più semplici di quelle dei coefficienti di Clebsch-Gordan. Un simbolo 3j è invariante per ogni permutazione pari delle sue colonne:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
=
\begin{pmatrix}
  j_2 & j_3 & j_1\\
  m_2 & m_3 & m_1
\end{pmatrix}
=
\begin{pmatrix}
  j_3 & j_1 & j_2\\
  m_3 & m_1 & m_2
\end{pmatrix}.

Una permutazione dispari delle colonne comporta invece una moltiplicazione per un fattore di fase uguale a \pm 1:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_2 & j_1 & j_3\\
  m_2 & m_1 & m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_1 & j_3 & j_2\\
  m_1 & m_3 & m_2
\end{pmatrix}.

Anche il cambiamento di segno dei numeri quantici m comporta la moltiplicazione per un fattore \pm 1:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  -m_1 & -m_2 & -m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}.

Invariante scalare[modifica | modifica sorgente]

La contrazione del prodotto di tre stati rotazionali con un simbolo 3j


  \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \sum_{m_3=-j_3}^{j_3}
  |j_1 m_1\rangle |j_2 m_2\rangle |j_3 m_3\rangle
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix},

è invariante per le rotazioni.

Relazioni di ortogonalità[modifica | modifica sorgente]


(2j+1)\sum_{m_1 m_2}
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1 & m_2 & m
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j'\\
  m_1 & m_2 & m'
\end{pmatrix}
=\delta_{j j'}\delta_{m m'}.


\sum_{j m} (2j+1)
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1 & m_2 & m
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1' & m_2' & m
\end{pmatrix}
=\delta_{m_1 m_1'}\delta_{m_2 m_2'}.

Espressione di integrali di armoniche sferiche pesate con spin[modifica | modifica sorgente]


\int d{\mathbf{\hat n}} {}_{s_1} Y_{j_1 m_1}({\mathbf{\hat n}})
{}_{s_2} Y_{j_2m_2}({\mathbf{\hat n}}) {}_{s_3} Y_{j_3m_3}({\mathbf{\hat
n}})=(-1)^{m_1+s_1} \sqrt{\frac{(2j_1+1)(2j_2+1)(2j_3+1)}{4\pi}}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  -s_1 & -s_2 & -s_3
\end{pmatrix}

Per utilizzare questa uguaglianza occorre verificare le convenzioni sui fattori di fase per le armoniche sferiche.

Voci correlate[modifica | modifica sorgente]

Bibliografia[modifica | modifica sorgente]

  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Princeton, 1960.
  • Leonard C. Maximon (2008): 3j,6j,9j Symbols, Chapter 34 della NIST Digital Library of Mathematical Functions
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.
  • E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).

Collegamenti esterni[modifica | modifica sorgente]