Retta di Eulero

Da Wikipedia, l'enciclopedia libera.
La retta di Eulero è la retta rossa che passa per l'ortocentro (blu), il centro del cerchio dei nove punti (rosso), il baricentro (arancione) e il circocentro (verde).

La Retta di Eulero è la retta passante per l'ortocentro, il baricentro e il circocentro di un triangolo. Il fatto che i tre punti siano allineati è dimostrato dal teorema di Eulero.

Detto G il baricentro, O il circocentro e H l'ortocentro, si ha che OH/GO=3. Infatti, il baricentro divide il segmento che unisce ortocentro e circocentro in due parti una il doppio dell'altra. Numerosi altri punti notevoli di un triangolo: ad esempio il centro della circonferenza che passa per i tre punti medi dei lati del triangolo, detta cerchio dei nove punti, giace sulla retta di Eulero, e divide a metà il segmento che ha per estremi l'ortocentro ed il circocentro del triangolo.

Voci correlate[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]

matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica