Punto di Fermat

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
punto di Fermat
Codice ETC13
Coordinate baricentriche
λ1a•cosec(A±π/3)
λ2b•cosec(B±π/3)
λ3c•cosec(C±π/3)
Coordinate trilineari
xcosec(A±π/3)
ycosec(B±π/3)
zcosec(C±π/3)

In geometria, il punto di Fermat, anche chiamato punto di Torricelli o punto di Fermat-Torricelli, è il punto che minimizza la distanza complessiva da tutti e tre i vertici di un triangolo. La scoperta risale come soluzione a un problema posto da Fermat a Torricelli.

Quando un triangolo ha un angolo maggiore di 120° il punto di Fermat è posto sul vertice dell'angolo ottuso. In un triangolo in cui l'angolo maggiore misura meno di 120°, il punto di Fermat è individuato dall'intersezione delle tre linee ottenute congiungendo ciascun vertice del triangolo con il vertice, non appartenente al triangolo, del triangolo equilatero costruito sul lato opposto a tale angolo esternamente al triangolo.

Proprietà[modifica | modifica wikitesto]

Il punto di Fermat ha diverse proprietà. Dato un triangolo ABC si deve costruire su ogni lato un triangolo equilatero in modo da formare tre triangoli chiamati ABC', AB'C, A'BC. Congiungendo AA', BB', CC' queste tre rette si incontrano in un punto F. Si dimostra che AA'=BB'=CC'. Infatti i triangoli ACA' e B'CB sono uguali perché CA = CB', CA' = CB, l'angolo ACA' = l'angolo BCB'. Ne segue che AA' = BB' e analogamente si prova che AA' = CC'. Creiamo tre circonferenze γ,α, β tali che γ sia circoscritta ad ACB', α sia circoscritta ad A'CB, β sia circoscritta ad AC'B. Le tre circonferenze avranno tutte in comune il punto F. Poiché i quadrilateri AC'BF, AB'CF sono inscritti in una circonferenza, l'angolo AFB =120° e l'angolo AFC =120°

Ne segue che: l'angolo BFC=120°: quindi il punto F appartiene a β. Il punto F appartiene a BB' perché: l'angolo AFB =120° l'angolo AFB' = l'angolo ACB'= 60°. Allo stesso modo si dimostra che F appartiene ad AA' e anche a CC'.

Il punto F è detto "punto di Fermat" del triangolo ABC.

Dimostrazione[modifica | modifica wikitesto]

Lemma 1
Per tutti i vettori
è equivalente alla proposizione che
hanno tutti tra di loro un angolo di 120°.
Dimostrazione del Lemma 1
Impostiamo i versori come segue:
Sia l'angolo tra due vettori unitari ,
Otterremo e i valori del prodotto interno come:
Così otteniamo
Viceversa, se versori degli hanno un angolo di 120° tra di loro, si ottiene
Quindi si può calcolare come
Pertanto si ottiene
QED
Lemma 2
Per tutti i vettori
Dimostrazione del Lemma 2
Per eventuali vettori di è dimostrato che
Possiamo impostare che
Poi avremo la disuguaglianza di Lemma 2. QED

Se il triangolo ABC è un triangolo in cui tutti gli angoli sono inferiori a 120°, siamo in grado di costruire il punto F all'interno del triangolo ABC. A questo punto impostando il punto F come origine dei vettori, avremo per qualsiasi X punto della E spazio euclideo, possiamo impostare

Se F è il punto di Fermat, poi Quindi, si ottiene l'uguaglianza dei Lemma 1.

Dal Lemma 2, possiamo ottenere

Per questi tre disuguaglianze e la parità di Lemma 1, si può ottenere

.

Esso viene utilizzato per tutti X punto dello spazio euclideo E, quindi se X = F, allora il valore di è minima. QED

Storia[modifica | modifica wikitesto]

Questo quesito fu posto da Fermat a Evangelista Torricelli. Egli risolse il problema in modo simile a Fermat, usando l'intersezione delle circonferenze dei tre triangoli regolari. Il suo allievo, Vincenzo Viviani, pubblicò la soluzione nel 1659.[1]

Note[modifica | modifica wikitesto]

  1. ^ Weisstein, Eric W., Punti di Fermat su MathWorld.

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica