Principio di Archimede

Da Wikipedia, l'enciclopedia libera.
Illustrazione del 1547 di un esperimento sul principio di Archimede.

Il principio di Archimede afferma che ogni corpo immerso parzialmente o completamente in un fluido (liquido o gas) riceve una spinta verticale dal basso verso l'alto, uguale per intensità al peso del fluido che occupa nel volume spostato.

È così detto in onore di Archimede di Siracusa, matematico e fisico greco, vissuto nel III secolo a.C. che lo enunciò nella sua opera Sui corpi galleggianti (nell'opera di Archimede si trattava però di un teorema, dedotto da un semplice postulato che oggi non viene quasi mai enunciato esplicitamente[1]).

Galileo Galilei nello scritto Discorso intorno alle cose che stanno in su l'acqua o che in quella si muovono (del 1612) difende il Principio di Archimede contro le erronee interpretazioni degli aristotelici.

Nel 2012 in uno studio condotto dal Politecnico di Milano e dall'Università degli Studi dell'Insubria-sede di Como, è stato mostrato sperimentalmente che il principio non sembra essere valido per dimensioni nanometriche. [2]

« Un corpo immerso (totalmente o parzialmente) in un fluido riceve una spinta (detta forza di galleggiamento) verticale (dal basso verso l'alto) di intensità pari al peso di una massa di fluido di forma e volume uguale a quella della parte immersa del corpo. Il punto di applicazione della forza di Archimede, detto centro di spinta, si trova sulla stessa linea di gradiente della pressione su cui sarebbe il centro di massa della porzione di fluido che si troverebbe ad occupare lo spazio in realtà occupato dalla parte immersa del corpo. »

Tale forza è detta forza di Archimede o spinta di Archimede o ancora spinta idrostatica (nonostante non riguardi solo i corpi immersi in acqua, ma in qualunque altro fluido – liquido o gas). Una formulazione più semplice del principio è la seguente:

« Un corpo immerso in un fluido riceve una spinta dal basso verso l'alto pari al peso del volume di fluido spostato »

La spinta si applica al baricentro della massa di fluido spostata e non al baricentro della parte del corpo immersa nel fluido ed è diretta, secondo l'equazione fondamentale dell'idrostatica, verso il piano dei carichi idrostatici (o piano a pressione relativa nulla), che nella maggioranza dei casi coincide con il pelo libero del fluido, ed è quindi diretta verso l'alto. Archimede inventò la bilancia idrostatica, utilizzata per misurare il peso specifico dei liquidi. Sulla base di quelle rilevazioni, affermò:

« Qualsiasi solido più leggero[3] di un fluido, se collocato nel fluido, si immergerà in misura tale che il peso del solido sarà uguale al peso del fluido spostato »
(I, 5)
« Un solido più pesante[4] di un fluido, se collocato in esso, discenderà in fondo al fluido e se si peserà il solido nel fluido, risulterà più leggero del suo vero peso, e la differenza di peso sarà uguale al peso del fluido spostato »
(I, 7)

Il principio è quindi un caso particolare dell'equazione fondamentale dell'idrostatica, che vale finché il fluido può essere trattato come un materiale continuo, e questo avviene solo fintanto che le dimensioni dei corpi immersi sono abbastanza grandi rispetto alle dimensioni delle molecole del fluido. Diversamente, il corpo (ad esempio dei granelli di polvere) è soggetto non più ad una spinta deterministica (di cui è noto modulo, direzione e verso, come quella di Archimede), ma ad una di carattere probabilistico che genera un moto Browniano.

Condizioni di equilibrio e non equilibrio di un corpo immerso[modifica | modifica wikitesto]

Da un punto di vista matematico, la forza di Archimede può essere espressa nel modo seguente:

F_A=\rho_{flu} \ g \ V

essendo ρflu la densità (massa volumica) del fluido, g l'accelerazione di gravità e V il volume spostato (che in questo caso è uguale al volume del corpo). Allo stesso modo, il peso del corpo è dato da

F_p=\rho_{sol} \ g \ V

essendo ρsol la densità media del solido immerso.

La spinta è indipendente dalla profondità alla quale si trova il corpo. La densità relativa (del corpo immerso nel fluido rispetto alla densità del fluido) è facilmente calcolabile senza misurare alcun volume:

Densità relativa in percentuale = \frac{Peso\ del\ corpo\ nello\ spazio\ vuoto} {Peso\ del\ corpo \ nello \ spazio \ vuoto\ - Peso\ della \ parte\ immersa\ nel \ fluido}\cdot 100

Il peso di un corpo immerso (parzialmente o totalmente) non è quello totale misurabile fuori dal liquido, ma il peso del volume di fluido spostato dalla parte immersa. Questa quantità riduce il peso del corpo (parte immersa e non nel fluido) quando si trova appeso ad un filo nello spazio vuoto.

Corpo immerso in un liquido[modifica | modifica wikitesto]

Principio di Archimede spinta e peso.png

Possono darsi tre casi (illustrati da sinistra a destra in figura):

  • Il corpo tende a cadere fino a raggiungere il fondo se la forza di Archimede è minore del peso, FA < Fp, ovvero se ρflu < ρsol.
  • Il corpo si trova in una situazione di equilibrio se la forza di Archimede è uguale al peso, FA = Fp, ovvero se ρflu = ρsol. Questo significa che se il corpo era in quiete rimarrà in quiete, mentre se era in moto si muoverà di moto decelerato fino a fermarsi per effetto dell'attrito.
  • Il corpo tende a risalire fino alla superficie dove galleggia se la forza di Archimede è maggiore del peso, FA > Fp, ovvero se ρflu > ρsol.

In questo caso il volume immerso Vi sarà tale da spostare un volume di fluido che equilibri il peso del corpo, ovvero:

\rho_{flu} \ g \ V_i =\rho_{sol} \ g \ V

da cui si deriva la formula del galleggiamento:

\frac{V_i}{V}=\frac{\rho_{sol}}{\rho_{flu}}
Principio di Archimede.svg
La frazione di volume immerso è quindi uguale al rapporto tra le densità del corpo e del liquido. Nel caso di un iceberg che galleggia nel mare, la densità del ghiaccio è circa 917 kg/m³, mentre la densità dell'acqua salata è circa 1025 kg/m³; in base alla formula precedente, la percentuale di volume immerso è quindi del 89,5%.

Dimostrazione della condizione di equilibrio nel galleggiamento[modifica | modifica wikitesto]

Un corpo rigido è in una situazione di equilibrio se la risultante delle forze agenti su di esso e la risultante dei momenti delle forze sono nulli. Consideriamo un corpo rigido immerso in un liquido: esso assumerà una situazione di equilibrio se la risultante della forza peso e della forza di Archimede sarà nulla. La forza peso di un corpo è uguale a m×g, dove possiamo indicare la massa anche come prodotto tra densità e volume. Fp= dVg. Allo stesso modo anche la spinta di Archimede è uguale al prodotto tra la densità, il volume e la costante gravitazionale. Se il corpo è in equilibrio allora Fp=Fa, gdV1=gdV2. Il corpo sarà in una situazione di galleggiamento, non si troverà né al di sopra, né al di sotto del liquido. A questo punto diremo quindi che il corpo avraà la stessa densità media del liquido in cui è immerso. Un esempio quotidiano è costituito, ad esempio, dai sommergibili. Ci chiediamo, infatti, perché a volte il sommergibile si trovi al di sopra del livello del mare e a volte scenda in profondità. Ciò avviene perché le stive del sommergibile vengono riempite di acqua marina nel caso in cui esso deve scendere in profondità, otterrà in questo modo circa la stessa densità dell'acqua. Quando dovrà salire a galla, le stive saranno riempite di aria compressa, in modo da eliminare l'acqua. Nel caso in cui consideriamo corpi costituiti da densità differenti, si effettuerà la media delle densità, proprio come nel caso del sommergibile.

Corpo immerso nell'atmosfera (o in un altro gas)[modifica | modifica wikitesto]

Le considerazioni fatte sopra per i liquidi valgono anche per i gas, con due importanti differenze:

  • la densità dell'aria nell'atmosfera è oltre settecento volte minore di quella dell'acqua; questo fa sì che solo i corpi con densità molto bassa possono essere sollevati dalla spinta di Archimede.
    • La maggior parte dei corpi ha una densità maggiore di quella dell'aria e per questo cade;
    • Alcuni corpi con densità uguale a quella dell'aria galleggiano;
    • I corpi con densità minore dell'aria vengono portati verso l'alto, come i palloncini di elio e le mongolfiere.
  • a differenza dei liquidi, la densità nei gas non è costante, ma è funzione della pressione, secondo la seguente espressione, derivata dalla legge dei gas perfetti
\rho_{gas}=\frac{pM}{RT}

essendo p la pressione del gas, M la sua massa molecolare e T la sua temperatura assoluta, mentre R=8.314 J/mole K è la costante dei gas. Poiché nell'atmosfera, la pressione diminuisce con la quota, anche la densità dell'aria è una funzione decrescente della quota: ρ=ρ(z). Una mongolfiera con ρflu < ρsol salirà fino ad una quota a cui la densità dell'aria calda interna è uguale a quella dell'aria esterna.

Esempi e applicazioni del principio di Archimede[modifica | modifica wikitesto]

Un fluido può essere inteso sia come liquido che come gas: una nave galleggia sull'acqua, ma anche una mongolfiera che sale verso l'alto è soggetta allo stesso principio. Una nave, anche se di ferro, essendo vuota (o meglio, piena d'aria), occupa un volume complessivo di materia (aria, ferro, plastica, legno e quant'altro compone una nave) che ha un certo peso; siccome lo stesso volume di sola acqua ha un peso maggiore, la spinta verso l'alto ricevuta dalla nave ne permette il galleggiamento; analogamente, una mongolfiera piena di aria calda o di elio (fluidi di peso specifico minore di quello dell'aria), risulta più leggera del volume di aria che sposta e viene spinta verso l'alto[5].

Un sommergibile in emersione ha una densità media minore di quella dell'acqua. Per potersi immergere deve aumentare la sua densità fino ad un valore maggiore di quello dell'acqua, allagando alcuni comparti interni. Per stabilizzarsi ad una certa profondità deve espellere una parte di quest'acqua in modo da raggiungere una densità pari a quella dell'acqua[6].

Diverse specie di pesci possono controllare in modo analogo il loro assetto subacqueo attraverso la vescica natatoria, che contiene aria. Comprimendo la vescica con l'azione dei muscoli riducono il volume d'aria incamerata, facendo diminuire l'intensità della spinta di Archimede e possono scendere; rilassando i muscoli la vescica si espande e possono invece risalire fino in superficie. Il subacqueo in immersione con autorespiratore effettua in pratica operazioni analoghe agendo sul proprio GAV.

Leonardo da Vinci così spiegava il principio di Archimede quando propose la costruzione di un ponte canale per Milano a Ludovico il Moro: il gran peso della barca che passa per il fiume sostenuto dall'arco del ponte, non cresce peso a esso ponte, perché la barca pesa di punto quanto il peso dell'acqua che tal barca caccia dal suo sito. La spinta di Archimede trova una sua applicazione nel fenomeno geo-fisico dell'Isostasia, ovvero il fenomeno del "galleggiamento" della litosfera rigida sull'astenosfera più fluida, in cui affondano le radici di un orogeno in formazione.

La litosfera, attraverso assestamenti isostatici, tende poi a riportarsi in equilibrio con l'astenosfera con un procedimento analogo a quello del Principio di Archimede finché non è finito il processo di formazione della nuova catena montuosa. Col suo famoso Eureka! Archimede intendeva dire che “aveva trovato” la soluzione al problema postogli da Gerone II che gli aveva chiesto di aiutarlo a verificare uno sgradevole sospetto. Il sovrano, per celebrare un successo, aveva commissionato ad un orefice una corona d'oro fornendogli per questo un certo quantitativo del prezioso metallo.

A lavoro finito la corona pesava esattamente quanto l'oro fornito, ma aveva il dubbio che parte dell'oro fosse stata sostituita con un uguale peso di metallo più vile (argento o rame). Basandosi sulla sua intuizione, Archimede aveva capito che due materiali diversi, aventi lo stesso peso ma necessariamente due volumi diversi (es. un chilo di ferro ed un chilo di legno) ricevono diverse spinte se immersi nell'acqua e queste spinte dipendono esclusivamente dal volume e non dal tipo di materiale o dal suo peso. In particolare, data l'elevata densità dell'oro, il volume di una corona in metallo vile sarà maggiore e così la spinta.

Fu quindi sufficiente utilizzare una bilancia ed appendere la corona ad un braccio, e all'altro braccio un lingotto di oro puro con peso pari a quello della corona. La bilancia era ovviamente in equilibrio. I due oggetti vennero allora immersi in acqua alzando due recipienti posti uno sotto ogni braccio. La corona era in parte composta da metallo più vile che era stato aggiunto in ugual peso ma in maggior volume e quindi in totale la corona aveva maggior volume del lingotto d'oro. La corona riceveva pertanto una spinta maggiore e la bilancia si spostò dalla parte dell'oro denunciando la frode.

Note[modifica | modifica wikitesto]

  1. ^ Cfr: Lucio Russo, La Rivoluzione dimenticata, Feltrinelli, 1996 (III ed. ampliata 2003).
  2. ^ Il Sole 24 ore - Archimede non ha sempre ragione
  3. ^ con peso specifico minore, N.d.T.
  4. ^ con peso specifico maggiore, N.d.T.
  5. ^ I.S.H.T.A.R. - Principio di Archimede, Università di Bologna. URL consultato il 23 ottobre 2011.
  6. ^ Il Gentileschi a bordo del Toti, ITST Gentileschi. URL consultato il 23 ottobre 2011.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]