Paradosso del mentitore

Da Wikipedia, l'enciclopedia libera.

Nella logica il paradosso del mentitore è descritto come: data una proposizione autonegante come "Questa frase è falsa", nessuno riuscirà mai a dimostrare se tale affermazione sia vera o falsa;

  • se infatti fosse vera, allora la frase non sarebbe veramente falsa (la verità della proposizione non invalida la falsità espressa nel contenuto della proposizione).
  • se invece la proposizione fosse falsa, allora il contenuto si capovolgerebbe (è come se dicesse "Questa frase è vera") quando abbiamo appena affermato il contrario.

Il paradosso del mentitore: versione originale[modifica | modifica wikitesto]

La tradizione attribuisce la prima formulazione del paradosso a Epimenide di Creta (VI secolo a.C.), il quale, cretese egli stesso, affermò che «i Cretesi sono bugiardi»[1].

Se assumiamo che l'affermazione sia vera, allora sarebbe vero che Epimenide, in quanto cretese, è un bugiardo. Ma allora la sua affermazione «i Cretesi sono bugiardi» non sarebbe vera ed otteniamo una contraddizione. Se invece assumiamo che l'affermazione sia falsa, allora sarebbe vera la negazione di «i Cretesi sono bugiardi», cioè sarebbe vero che alcuni cretesi dicono la verità e alcuni mentono. In questo caso non vi è alcuna contraddizione e possiamo identificare Epimenide come uno dei cretesi che mentono. Per quanto argomentato nel caso precedente, non può infatti esser vero che Epimenide dica la verità.

Non si conosce il contesto in cui Epimenide fece questa affermazione; fu solo più tardi che questa fu di nuovo citata (per esempio nella Lettera a Tito 1,12-13 di Paolo di Tarso) e presentata come un paradosso del mentitore.

Diogene Laerzio[2] ha attribuito l'ideazione del paradosso a Eubulide di Mileto (IV secolo a.C.), il quale riformulò l'affermazione di Epimenide dicendo ψευδόμενος (pseudòmenos), «io sto mentendo». Da notare in primo luogo che la frase è «io sto mentendo», e non «io sono bugiardo», nel senso che «quello che sto dicendo in questo momento è una menzogna».

Con Eubulide si ripropone lo stesso dilemma di Epimenide: può essere vera la frase di uno che afferma «io sto dicendo il falso»? La frase di Eubulide non può essere vera, ma non può essere neanche falsa, perché c'è un elemento nuovo rispetto a «tutti i Cretesi mentono».

L'elemento nuovo è l'autoriferimento: Eubulide sta parlando di se stesso, cioè sta affermando di se stesso che mente, e questo non può essere né vero né falso.

Il paradosso del mentitore: elaborazioni successive[modifica | modifica wikitesto]

Dal paradosso del mentitore sono derivate elaborazioni diversificate di molti autori attraverso tutti i secoli, e anche attualmente l'argomento è assai discusso.

Tra le più note riformulazioni del paradosso del mentitore vi sono:

  • quella di Aristotele (Confutazioni sofistiche (XXV)), il quale propose due quesiti di analoga contraddittorietà:
    • è possibile giurare di rompere il giuramento che si sta prestando?
    • è possibile ordinare di disobbedire all'ordine che si sta impartendo?
  • quella di Diogene Laerzio (II secolo d.C.): un coccodrillo gigante ghermisce un bambino che gioca sulle rive del Nilo; la madre del piccolo implora il coccodrillo di restituirle il figlio, ma il coccodrillo fa la seguente proposta: "Se indovini quello che farò, ti restituirò il bambino". La madre allora dice al coccodrillo: "Credo che mangerai il piccolo". Se la madre ha detto il vero, se ha cioè indovinato che il coccodrillo vuole mangiare il bambino, allora in questo caso il coccodrillo ha promesso di restituire il bimbo. Ma se il coccodrillo restituisce il bimbo, significherebbe che non lo ha mangiato, e quindi la donna non avrebbe indovinato e non potrebbe salvare la vita del figlio. Risultato: in tutti i casi, se la madre dice "tu lo mangerai", non potrà mai riavere il figlio e il coccodrillo non potrà mai mantenere la promessa di restituirlo.
  • quella di Giovanni Buridano, o meglio Jean Buridan, filosofo francese morto di peste a Parigi nel 1358 o 1360. Fino a quell'epoca, durante la Scolastica, si era sempre pensato che i problemi logici derivanti dal paradosso del mentitore derivassero dal carattere di autoreferenza. Buridano dimostrò che il problema non era l'autoreferenza, elaborando un paradosso nel quale l'autoriferimento era per così dire spezzato in due. Egli immaginò due protagonisti, Socrate e Platone, ciascuno dei quali pronuncia una sola frase. Socrate dice "Platone dice il falso"; Platone dice "Socrate dice il vero". Vista isolatamente, ciascuna delle due frasi non è affatto paradossale, ma la loro congiunzione lo diventa. Se Socrate dice effettivamente il vero, allora Platone mente davvero e di conseguenza (contraddicendo alla premessa) Socrate dice il falso. Non è possibile che la frase di Socrate sia vera e poi arrivare alla conclusione che è falsa.
  • quella elaborata da Miguel de Cervantes nel Don Chisciotte (1615), dove si narrava di Sancho Panza che divenne governatore di Barataria e si trovò a dover decidere sul caso accaduto a un militare, messo di guardia su un ponte con l'ordine di impiccare tutti coloro che mentivano circa il motivo per cui volevano oltrepassare il ponte stesso. Il militare raccontava che un giorno era arrivato un tale a cui fu domandato perché voleva passare il ponte. A questa domanda, il tale rispose: "Voglio attraversare il ponte solo per essere impiccato in base alla legge". Se fosse vero che costui voleva farsi impiccare, allora aveva detto la verità e quindi non doveva essere impiccato. Se stesse mentendo, e poi fosse stato impiccato, avrebbe detto la verità e avrebbe dovuto essere lasciato libero.
  • quella di Philip Jourdain, che nel 1913 riformulò il paradosso di Buridano eliminando il riferimento a personaggi celebri, ponendo semplicemente due affermazioni: "la frase seguente è falsa" e "la frase precedente è vera".

Soluzioni del paradosso del mentitore[modifica | modifica wikitesto]

La soluzione data da Crisippo dice semplicemente che il paradosso è il rovesciamento del buon senso: ci sono frasi delle quali «non si deve dire che esse dicono il vero e (neppure) il falso; né si deve congetturare in un altro modo, cioè che lo stesso (enunciato) esprima simultaneamente il vero e il falso, bensì che esse sono completamente prive di significato».

La soluzione prospettata da Aristotele è la seguente: le frasi paradossali si fondano sulla confusione tra uso e menzione. Quando si dice "io sto mentendo", si sta usando la frase, nel senso che si tratta di un paradosso di tipo autoreferenziale, catalogato tra gli insolubilia; chi enuncia una frase insolubile, non dice letteralmente nulla e pertanto la proposizione (o meglio, la pseudoproposizione) deve essere semplicemente cassata.

Nel Medioevo, una proposta di soluzione fu avanzata da Guglielmo di Ockham (1285-1350). Dal momento che la cassatio di Aristotele non forniva una soluzione concreta, egli introdusse la distinzione tra linguaggio e metalinguaggio. Solo le frasi autoreferenziali mescolano i due livelli in uno solo, perché dire "io sto mentendo" è una frase che si pone nel metalinguaggio (per quanto riguarda il verbo mentire, il cui concetto trova spiegazione non nella frase stessa ma in un altro livello), ma è espressa mediante il linguaggio.

La proposta di soluzione di Buridano fu dettata dall'intuizione della logica temporale: un'affermazione non è vera o falsa in assoluto, ma solo relativamente a un certo momento storico. Mentre non è possibile che una frase possa essere vera o falsa nello stesso tempo, essa può esserlo in tempi diversi: Basterebbe dire "Platone dirà il falso quando pronuncerà la prossima frase" e "Socrate disse il vero quando pronunciò la frase precedente".

Nel '900, Tarski propose la soluzione considerata più soddisfacente[senza fonte], che considera l'autonimia con cui un enunciato di un linguaggio occorre nel metalinguaggio che lo analizza.[gergale e per nulla esplicante]

Nelle logiche non classiche in cui non vale il principio di non-contraddizione, le proposizioni come quelle del mentitore non generano alcun paradosso. Per esempio nella logica fuzzy, dove il valore di verità può variare tra 0 e 1, tali frasi hanno un valore di verità pari a 0,5.

Note[modifica | modifica wikitesto]

  1. ^ Liar Paradox (Stanford Encyclopedia of Philosophy)
  2. ^ II, 108.

Bibliografia[modifica | modifica wikitesto]

  • Piergiorgio Odifreddi, Le menzogne di Ulisse: l'avventura della logica da Parmenide ad Amartya Sen, Milano, Saggistica TEA, 2003, ISBN 978-88-502-1191-3.

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

(EN) Michael Glanzberg, Liar Paradox in Edward N. Zalta (a cura di), Stanford Encyclopedia of Philosophy, Center for the Study of Language and Information (CSLI), Università di Stanford.

filosofia Portale Filosofia: accedi alle voci di Wikipedia che trattano di filosofia