Numero di Zeisel

Da Wikipedia, l'enciclopedia libera.

Un numero di Zeisel, così chiamato in onore di Helmut Zeisel, è un numero intero privo di quadrati k che possiede almeno tre fattori primi in progressione aritmetica. I fattori in questione cadono nella sequenza

p_x = ap_{x - 1} + b

Dove a e b sono delle costanti intere e x è l'indice di ciascun fattore primo nella fattorizzazione, in ordine dal più piccolo al più grande. Per determinare i numeri di Zeisel, p_0 = 1. I primi numeri di Zeisel sono

105, 1419, 1729, 1885, 4505, 5719, 15387, 24211, 25085, 27559, 31929, 54205, 59081, 114985, 207177, 208681, 233569, 287979, 294409, 336611, 353977, 448585, 507579, 982513, 1012121, 1073305, 1242709, 1485609, 2089257, 2263811, 2953711, … [1]

Ad esempio, 1729 è un numero di Zeisel con costanti a = 1 e b = 6, mentre i suoi fattori primi sono 7, 13 e 19, che cadono nella sequenza


\begin{align}
p_1 = 7, & {}\quad p_1 = 1p_0 + 6 \\
p_2 = 13, & {}\quad p_2 = 1p_1 + 6 \\
p_3 = 19, & {}\quad p_3 = 1p_2 + 6
\end{align}

1729 è un esempio di numero di Carmichael del tipo (6n + 1)(12n + 1)(18n + 1), che soddisfa la sequenza p_x = ap_{x - 1} + b con a= 1 e b = 6n, così che ogni numero di Carmichael esprimibile in forma (6n+1)(12n+1)(18n+1) sia un numero di Zeisel.

Altri numeri di Carmichael di questo tipo sono: 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, …

Note[modifica | modifica wikitesto]

  1. ^ (EN) Sequenza A051015 in On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.

Collegamenti esterni[modifica | modifica wikitesto]