Numero di Skewes

Da Wikipedia, l'enciclopedia libera.

Nella teoria dei numeri, il termine numero di Skewes può riferirsi a più di uno dei numeri interi estremamente grandi usati dal matematico sudafricano Stanley Skewes.

Per definizione, il numero è il più piccolo numero naturale x per cui

π(x) − Li(x) ≥ 0

dove π(x) è la funzione enumerativa dei primi e Li(x) è la funzione Logaritmo integrale.

John Edensor Littlewood, il maestro di Skewes, dimostrò nel 1914 che tale numero esiste (e dunque, un tale primo numero); e provò anche che il segno della differenza π(x) − Li(x) cambia infinitamente spesso. Che tale numero esistesse non era affatto chiaro; infatti, l'evidenza numerica allora disponibile sembrava suggerire che π(x) fosse sempre minore di Li(x). La prova di Littlewood, comunque, non fornì un esempio concreto del numero x; non era dunque un risultato costruttivo.

Skewes, nel 1933, dimostrò che, assumendo che l'ipotesi di Riemann fosse vera, esiste un numero x che viola la relazione π(x) < Li(x) inferiore a

e^{e^{e^{79}}}

(ora chiamato talvolta primo numero di Skewes'), che è approssimativamente uguale a

10^{10^{8,85 \times 10^{33}}}.

Nel 1955, senza l'assunzione dell'ipotesi di Riemann, dimostrò che deve esistere un valore di x inferiore a

10^{10^{10^{1000}}}

(chiamato talvolta secondo numero di Skewes).

Questi (enormi) estremi superiori, da allora, sono stati ridotti considerevolmente. Senza assumere l'ipotesi di Riemann, H. J. J. te Riele nel 1987 trovò un estremo superiore di

7 × 10370.

Una approssimazione migliore era 1,39822 × 10316 scoperta da Bays e Hudson (2000). Il miglior valore per il primo attraversamento di zero è ora 1,397162914 × 10316 (Demichel 2005). Questo è, con un intervallo di confidenza molto elevato, il primo caso per cui si verifica Li(x) < π(x).

Bibliografia[modifica | modifica wikitesto]

  • J.E. Littlewood: "Sur la distribution des nombres premiers", Comptes Rendus 158 (1914), pages 1869-1872
  • S. Skewes: "On the difference π(x) − Li(x)", Journal of the London Mathematical Society 8 (1933), pages 277-283
  • S. Skewes: "On the difference π(x) − Li(x) (II)", Proceedings of the London Mathematical Society 5 (1955), pages 48-70
  • H.J.J. te Riele: "On the difference π(x) − Li(x)", Math. Comp. 48 (1987), pages 323-328
matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica