Metallurgia delle polveri

Da Wikipedia, l'enciclopedia libera.
Fasi del processo di metallurgia delle polveri del rodio: ottenimento delle polveri (sinistra), compatto (centro) e rodio sinterizzato (destra).

Con l'espressione metallurgia delle polveri si indica la sequenza di operazioni che portano alla compattazione e trasformazione di un materiale pulvirulento metallico in un materiale indivisibile.[1]

Le operazioni che vengono svolte a tale scopo sono, nell'ordine:

  • riduzione del materiale in polvere
  • condizionamento delle polveri
  • sinterizzazione ad elevata pressione e temperatura oppure pressatura e formatura (a temperatura ambiente) e successiva sinterizzazione ad elevata temperatura.

Cenni storici[modifica | modifica wikitesto]

Esempio di forno metallurgico per la sinterizzazione di materiale ferroso (1895).

Le prime applicazioni del processo di sinterizzazione possono essere associate alla produzione di manufatti in ceramica durante la preistoria.[2]

Al 3000 a.C. risalgono i primi manufatti di ferro sinterizzato, prodotto in India e in Egitto.[3]

In tempi più recenti tale processo si è esteso anche nel settore dei materiali metallici. Nel caso dell'acciaio, si svolgeva la sinterizzazione riducendo con il carbone la limatura d'acciaio precedentemente ossidata allo stato pastoso; in questo modo la riduzione con il carbone eliminava le impurità permettendo poi la compressione e la forgiatura per ottenere un compatto.

Al 1822 risale la produzione in Francia di lingotti di platino a partire dalle polveri di tale metallo.[3] Nello stesso decennio tale tecnica fu progressivamente migliorata e nel 1830 il processo di sinterizzazione veniva applicata ad un ampio spettro di materiali metallici.[3]

La tecnologia della sinterizzazione venne applicata con successo intorno nella seconda metà del XIX secolo per la produzione di filamenti di tungsteno,[3] aprendo la strada alla produzione delle prime lampade a incandescenza.

Agli inizi del XX secolo la metallurgia delle polveri venne applicata per la produzione di filtri in materiale metallico sinterizzato.[3] Nel 1915 si ottennero inoltre le prime trafile attraverso la sinterizzazione di carburi di tungsteno e molibdeno e nel 1922 la Krupp avvio la produzione di carburo di tungsteno con il processo al cobalto in fase liquida. Sempre negli anni venti si cominciarono a realizzare tramite sinterizzazione materiali destinati a svolgere la funzione di contatti elettrici.

Nei decenni successivi, la sinterizzazione venne applicata anche per la produzione di magneti, frizioni magnetiche, cuscinetti in bronzo poroso autolubrificati e palette per turbine a gas.[4]

Ottenimento delle polveri[modifica | modifica wikitesto]

Le polveri possono essere ricavate tramite processi chimici, fisico-chimici e meccanici.[5]

I processi meccanici vengono ottenuti frantumando del materiale fragile con dei martelli contenuti nei buratti ruotanti con sfere oppure polverizzando tramite coltelli rotanti delle bave di materiale fuso.

Per quanto concerne i processi fisico-chimici, essi si ottengono in diversi modi:

  • da bagni salini per azione elettrolitica dove per effetto dell'urto si ricava la polvere che precedentemente si era depositata sotto forma spugnosa e poi essiccata:
  • attraverso un massiccio getto di gas inerte che atomizza una bava di materiale fuso
  • attraverso l'idrogeno ad alta pressione che riduce gli ossidi
  • attraverso il monossido di carbonio ad alta pressione che dissocia i composti carboniosi volatili del ferro o del nichel
  • attraverso uno scintillio elettrico
  • attraverso il processo di ossidazione di trucioli finemente sminuzzati in polvere impalpabile a sua volta sottoposta a riduzione
  • attraverso un cannello al plasma che vaporizza il materiale e lo condensa sotto vuoto.[4]

Forma e dimensioni dei grani di polvere[modifica | modifica wikitesto]

Polvere di ferro.

La forma e la dimensione dei grani è diversa in funzione della tipologia del procedimento usato.

Si individuano forme dei grani sferiche, lamellari oppure poliedriche.

La dimensione dei granelli di povere utilizzati per il processo di sinterizzazione si aggira tipicamente intorno a 0,1-100 μm.[6] In generale, a seconda delle loro dimensioni, le polveri utilizzate possono essere classificate in:[7]

  • polveri ultradisperse (UDP): 0,001-0,1 μm
  • polveri finemente disperse (FDP): 0,1-10 μm
  • polveri mediamente disperse (ADP): 10-200 μm
  • polveri "grosse" (C/LDP): 200-1000 μm.

Condizionamento delle polveri[modifica | modifica wikitesto]

Ottenimento del compatto[modifica | modifica wikitesto]

Il compatto si ottiene tramite:

  • forti pressioni impresse da vibratori ad alta frequenza, presse o laminatoi che esercitano forze di compressione con range minimo di 100 N/mm2 e range massimo di 1400 N/mm2 in funzione della densità desiderata da ottenere e della diversa plasticità
  • una pistola che spara la polvere contro una superficie fissa o rotante
  • secondo il procedimento per realizzare il bisquit in pezzi cavi, da polveri sedimentate: il liquido di sospensione delle polveri viene assorbito dalla zona porosa dello stampo ottenendo quindi degli organi metallici.
  • con un'esplosione in vasca d'acqua che permette conferimenti di ottime densità sfruttando le elevate pressioni in gioco
  • usando dei leganti durante il versamento delle polveri.[4]

Sinterizzazione[modifica | modifica wikitesto]

Exquisite-kfind.png Per approfondire, vedi sinterizzazione.
Avvicinamento, accrescimento e coalescenza dei grani cristallini durante il processo di sinterizzazione.

Il processo di sinterizzazione è un trattamento termico che viene svolto ad una temperatura inferiore al punto di fusione di tutti i costituenti della miscela (sinterizzazione allo stato solido)[8] o inferiore al punto di fusione del costituente principale (sinterizzazione allo stato liquido).[8]

Il prodotto della sinterizzazione ha in genere una porosità differente (maggiore o minore[8]) della polvere da cui è stato ottenuto, maggiore densità[9] e grani cristallini più grandi.[9] Queste ultime due caratteristiche dei materiali sinterizzati sono da ricondursi a due distinti meccanismi che avvengono durante il processo di sinterizzazione, che sono la "densificazione"[6] (che comporta l'avvicinamento dei grani cristallini fino alla loro coalescenza) e la crescita dei grani cristallini.[6]

La sinterizzazione permette l'ottenimento di:

  • organi sinterizzati con l'aiuto di fase liquida: si ottengono miscelando due o più polveri di materiali diversi che formano quindi un materiale compatto. Questo compatto viene successivamente portato ad una temperatura prossima alla fusione del materiale componente la polvere che fonde a temperatura inferiore, ottenendo quindi un materiale molto più tenace e resistente.
  • organi con forma prestabilita: si utilizzano polveri compresse in uno stampo per ottenere poi un compatto che verrà riscaldato a temperatura inferiore alla temperatura di fusione per quel materiale. Così facendo, si rafforzerà l'unione fra i grani che compongono la polvere e si avrà un organo pronto per subire processi di lavorazione diversi come ad esempio la forgiatura o l'estrusione.

Nella tecnologia di sinterizzazione classica o puramente termica o termomeccanica (ovvero con l'aiuto di pressione ed alta temperatura) la temperatura che deve essere raggiunta per ottenere il processo di sinterizzazione è di circa 0,7-0,9 volte la temperatura di fusione[in quali unità di misura?]. Il procedimento consiste nella rimozione della porosità tra le particelle della polvere di partenza, nella crescita delle particelle, nella formazione di robusti collegamenti (colli) tra queste e nel ritiro dei componenti. La caratteristica di un componente realizzato per sinterizzazione è l'estrema durezza della superficie di lavoro, unita alla relativa economicità nel produrlo in serie.

Applicazioni[modifica | modifica wikitesto]

Note[modifica | modifica wikitesto]

  1. ^ Kaysser, cap. 1.
  2. ^ Kang, p. 3.
  3. ^ a b c d e Angelo, p. 2.
  4. ^ a b c Il nuovo manuale di meccanica
  5. ^ Kaysser, cap. 2.
  6. ^ a b c Kang, p. 7.
  7. ^ Science of Sintering in the XXI Century, p. 45.
  8. ^ a b c Kaysser, cap. 6.
  9. ^ a b Kang, p. 1.

Bibliografia[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]