IEEE 802.3

Da Wikipedia, l'enciclopedia libera.

Lo standard IEEE 802.3 è una tecnologia per reti locali (LAN) derivata nel 1985 dalla precedente tecnologia Ethernet. È probabilmente il più popolare di un'ampia famiglia di protocolli, IEEE 802.

È questo standard a definire le caratteristiche del protocollo CSMA/CD.

Descrizione[modifica | modifica wikitesto]

Nella pila di protocolli di rete del modello di riferimento ISO/OSI, 802.3 occupa il livello fisico e la parte inferiore del livello di collegamento dati. IEEE ha infatti ritenuto opportuno suddividere questo livello in due parti: LLC, Logical Link Control e MAC, Media Access Control. Il sottolivello LLC è comune a tutti gli standard della famiglia IEEE 802, mentre il sottolivello MAC è più strettamente legato al livello fisico, e le sue diverse implementazioni hanno il compito di offrire un'interfaccia comune al livello LLC. Fra queste implementazioni vanno ricordate in particolare 802.4, token bus e 802.5, token ring.

Le caratteristiche di 802.3 sono ben riassunte nell'acronimo CSMA/CD:

Carrier Sense
Ogni stazione sulla rete locale ascolta continuamente il mezzo trasmissivo;
Multiple Access
Il mezzo trasmissivo è condiviso da tutte le stazioni, ognuna delle quali vi accede da un punto differente;
Collision Detection
Le stazioni sono in grado di rilevare la presenza di collisioni dovute alla trasmissione simultanea, e reagire di conseguenza.

Topologie di rete[modifica | modifica wikitesto]

802.3 offre grande flessibilità nella scelta della topologia di una LAN.

Originariamente era utilizzata soltanto la topologia a bus, ereditata da Ethernet. In questa topologia, il collegamento logico e quello fisico coincidono, e tutte le stazioni condividono il mezzo trasmissivo.

L'utilizzo di dispositivi di rete quali gli hub consente di ottenere un collegamento di topologia logica a stella pur utilizzando una topologia fisica a bus.[1] Gli hub possono essere collegati in cascata, permettendo di realizzare una complessa rete di topologia logica ad albero nonostante si tratti pur sempre di una topologia fisica a bus.

Non è però possibile realizzare cicli, ovvero topologie in cui tra due nodi esistano due diversi percorsi fisici, perché in questo modo i pacchetti verrebbero replicati all'infinito, saturando la rete e rendendola inusabile.

Questo diventa un grosso problema nelle reti locali complesse, in cui non è possibile avere una mappa delle connessioni, e quindi può diventare difficile rendersi conto che si sta creando un ciclo. Inoltre, non è possibile creare topologie ridondanti.[non chiaro]

Introducendo ulteriori dispositivi, come bridge e switch dotati dello Spanning Tree Protocol, è possibile realizzare topologie di rete che comprendano cicli, in quanto lo Spanning Tree Protocol si occupa di mettere fuori servizio i collegamenti che creerebbero cicli, e di rimetterli in servizio in caso di caduta dei collegamenti attivi, per ripristinare la connettività.

Livello fisico[modifica | modifica wikitesto]

Connettori RJ 45

Al livello fisico del modello ISO/OSI, 802.3 prevede esclusivamente trasmissioni via cavo in banda base, a velocità di 10, 100 e 1000 Mbps, su cavi coassiali, doppini intrecciati (schermati e non) e fibre ottiche. Queste e altre caratteristiche sono riassunte negli acronimi usati per le varie implementazioni del livello fisico, tutti del tipo NBaseA, essendo N la velocità di trasmissione, Base indica che l'implementazione opera in banda base, ed A è una sigla legata al tipo di cavo utilizzato e ad altre caratteristiche salienti. Fra le implementazioni ormai non più installate, o addirittura mai implementate, vanno ricordate 10Base5 (thick Ethernet), 10Base2 (thin Ethernet), 10Base-T, 100Base-T2 e 100Base-T4.

Attualmente vengono installate soprattutto le varianti a 100 Mbps e superiori, come 100Base-T, al momento certamente fra le più diffuse. Di seguito sono illustrate brevemente alcune di queste implementazioni.

100Base-TX (Fast Ethernet)
Usa due doppini UTP almeno di categoria 5, oppure due doppini schermati (STP, Shielded Twisted Pair). Oltre ad approfittare della più elevata qualità dei cavi, questa implementazione trae vantaggio dalla codifica 4B/5B del segnale, più complessa della codifica Manchester, ma dalle prestazioni più alte. Al momento attuale (2004), è l'implementazione a 100 Mbps più diffusa in assoluto.
100Base-FX
Come 100Base-TX, ma su fibra ottica multimodale in prima finestra.
1000Base-X
Famiglia di implementazioni basate sulla trasmissione a 1Gbps (Gigabit Ethernet). A seconda del supporto fisico, si distinguono:
1000Base-SX
Fibra ottica multimodale in prima finestra, distanze fino a 275m o 550m a seconda del tipo di fibra.Standardizzata come 802.3z
1000Base-LX
Fibra ottica monomodale in seconda finestra, distanze fino a 5km (secondo lo standard) o 10km (secondo molti produttori).
1000Base-T
Gigabit ethernet su cavi di rame (UTP categoria 5). Standardizzata come IEEE 802.3ab. Vengono usate tutte e 4 le coppie di conduttori di un cavo UTP.
La distanza massima è sempre di 100m.
1000Base-TX
Gigabit ethernet su cavi di rame (UTP categoria 6). Standardizzata anche questo come IEEE 802.3ab. Vengono usate solo 2 coppie di conduttori in modo da risparmiare sul costo degli apparati attivi.
La distanza massima è sempre di 100m.
1000Base-LLX o 1000Base-LH o 1000BASE-ZX
Fibra ottica monomodale, con trasmissione in terza finestra, distanze fino 70km. Non standardizzata ma offerta da molti produttori.
10GBase-X
Famiglia di implementazioni basata sulla trasmissione a 10Gbps esclusivamente di tipo ottico. A seconda del supporto fisico, si distinguono:
10GBASE-S
Fibra multimodale, distanze fino a 65m
10GBASE-LX4
Trasmissione su 4 frequenze.
Su fibra multimodale, distanze fino a 300m, oppure su fibra monomodale in seconda finestra distanze fino a 10km
10GBASE-L
Su fibra monomodale in seconda finestra distanze fino a 10km
10GBASE-E
Su fibra monomodale in terza finestra distanze fino a 40km

Struttura dei frame[modifica | modifica wikitesto]

Il cosiddetto frame Ethernet costituisce l'unità elementare di informazione per il sottolivello MAC di IEEE 802.3. La struttura di un frame è riassunta nella tabella sotto, che riporta il nome di ciascun campo e la relativa lunghezza (la lunghezza minima di un frame è di 64 byte):

Struttura del frame Ethernet
Campo PRE SFD DA SA L/T Dati PAD FCS
Byte 7 1 2-6 2-6 2 0 - 1500 0-46 4

I campi hanno il seguente significato:

PRE (Preamble) 
Preambolo del frame. Si tratta semplicemente di una sequenza di segnali 1 e 0 che consente al ricevente di sincronizzare la comunicazione ovvero quella di svegliare l'adattatore mettendolo in guardia dell'arrivo della trama.
SFD (Starting Frame Delimiter) 
Questo campo è composto da un byte, la cui sequenza di bit è 10101011 (in esadecimale AB). Lo SFD dichiara che dal prossimo byte avrà inizio il frame vero e proprio, a partire dall'indirizzo di destinazione del frame (DA).
DA (Destination Address)
Indirizzo destinazione. Si tratta di sei byte, spesso rappresentati nella forma aa:bb:cc:dd:ee:ff. Il primo bit ha un significato particolare: se vale 0, la destinazione è una singola unità, altrimenti è un gruppo. Anche il secondo bit ha un significato speciale: se vale 0, l'indirizzo ha valore globale, altrimenti ha soltanto valore locale.
SA (Source Address) 
Indirizzo sorgente. Ha la stesso struttura del DA, ma rappresenta sempre una singola unità, per cui il primo bit è sempre 0.
L/T (Length/Type) 
Lunghezza o tipo del frame. Possono esistere diversi tipi di frame. Il tipo normale serve a trasferire dati, ma in certi casi è necessario trasmettere informazioni estranee ai dati veri e propri, per segnalare qualche particolare situazione creatasi nella rete locale. In questo caso il campo L/T assume un valore da 1536 in su; valori differenti superiori o uguali a 1536 determinano un tipo diverso di frame. Se invece il valore è inferiore a questa soglia (al massimo 1500), questo indica esattamente il numero di byte di dati forniti dal livello superiore (il MAC client) che saranno trasmessi in questo frame.
Dati (Payload) 
Sono i dati veri e propri che, nel caso di frame normale, verranno trasmessi con questo frame. I dati veri e propri possono ammontare al massimo a 1500 byte, ma se sono meno di 46 byte, occorre aggiungere dei byte supplementari di riempimento per arrivare almeno a 46 byte. Questo garantisce in ogni caso una lunghezza totale del frame di almeno 64 byte, essenziale per evitare che la trasmissione di frame troppo corti sui più lunghi segmenti ammessi provochi la mancata individuazione delle collisioni nei casi peggiori.
PAD
È un campo di riempimento utilizzato per garantire la lunghezza minima di 64 byte. Esso varia da 0 a 46 byte, essendo 18 i byte sempre presenti nella trama.
FCS (Frame Check Sequence) 
Frame Check Sequence. Il mittente calcola su tutta la parte precedente del frame un valore di controllo secondo un algoritmo CRC (Cyclic Redundancy Check), ed inserisce in questo campo il risultato. Il ricevente farà lo stesso non appena ricevuto l'intero frame, e potrà così confrontare il valore di questo campo con quello da lui calcolato. In questo modo si elevano notevolmente le possibilità di riscontrare errori di trasmissione nei frame, che provocano lo scarto del frame errato.

Note[modifica | modifica wikitesto]

  1. ^ Prof. Nicola Ceccon, HUB e SWITCH. URL consultato il 18 giugno 2014.
    «Con l’utilizzo di un Hub la topologia logica è a bus, ma quella fisica è a stella».

Codifica del segnale[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Telematica Portale Telematica: accedi alle voci di Wikipedia che parlano di reti, telecomunicazioni e protocolli di rete