Fotodiodo

Da Wikipedia, l'enciclopedia libera.
Alcune tipologie di fotodiodi

Il fotodiodo è un particolare tipo di diodo fotorilevatore che funziona come sensore ottico sfruttando l'effetto fotovoltaico, in grado cioè di riconoscere una determinata lunghezza d'onda dell'onda elettromagnetica incidente (assorbimento del fotone) e di trasformare questo evento in un segnale elettrico di corrente applicando ai suoi estremi un opportuno potenziale elettrico. Esso è dunque un trasduttore da un segnale ottico ad un segnale elettrico.

Struttura del fotodiodo[modifica | modifica wikitesto]

Un fotodiodo è sostanzialmente un diodo a semiconduttore caratterizzato da una giunzione p-n drogata asimmetricamente. La zona p, cioè la zona drogata con {N_a} accettori è molto più drogata rispetto alla zona n, zona caratterizzata dalla presenza di atomi {N_d} donatori. La zona p, disposta molto vicino alla struttura esterna del fotodiodo è a sua volta rivestita da uno strato antiriflesso e corredata da due elettrodi in ossido di silicio. Sopra lo strato antiriflesso è in genere inserita una lente il cui scopo è quello di rendere perpendicolari i raggi luminosi incidenti sulla superficie.

Polarizzazione diretta[modifica | modifica wikitesto]

Il fotodiodo, se polarizzato direttamente si comporta come un comune diodo. La corrente che esso è in grado di condurre segue, in prima approssimazione, la legge esponenziale del diodo. Non essendo tuttavia progettato per la polarizzazione diretta, esso non avrà una capacità di corrente tale da suggerirne un simile utilizzo, in quanto il surriscaldamento dovuto al passaggio di corrente potrebbe danneggiare gli elementi ottici.

Polarizzazione inversa[modifica | modifica wikitesto]

Il fotodiodo opera correttamente se polarizzato inversamente, e cioè se la tensione ai propri terminali si presenta più alta nella zona n che nella zona p. In questo caso, il campo elettrico di built-in, presente in tutti i dispositivi a giunzione, tenderà ad aumentare di intensità favorendo la creazione di una zona di svuotamento (depletion region). Questa regione svuotata può essere considerata come una zona resistiva oppure come una zona neutra. Nel momento in cui un fotone incide sulla superficie del fotodiodo, l'energia, data dall'equazione

{E_g}={h}{\nu}

se sarà maggiore del bandgap tra banda di valenza e banda di conduzione del dispositivo, causerà la creazione di una coppia elettrone-lacuna libera (EHP). Una EHP libera consiste in un elettrone eccitato in banda di conduzione ed una lacuna in banda di valenza. Una volta generata la coppia, essa sarà soggetta al campo elettrico generato dalla differenza di potenziale applicata. L'elettrone sarà quindi spontaneamente attratto verso la zona n mentre la lacuna verso la zona p. A causa della presenza di una coppia elettrone-lacuna nella zona svuotata, la regione non sarà più neutra. Non essendo più neutra. il dispositivo compenserà questa situazione con un movimento di elettroni-lacune prelevati dal generatore di polarizzazione, causando così la presenza di una fotocorrente inversa che rappresenta il segnale elettrico prodotto dall'incidenza del fotone.

Utilizzo apolarizzato[modifica | modifica wikitesto]

Se il fotodiodo non è sottoposto ad alcuna polarizzazione, esso agirà, se opportunamente connesso ad un carico, come generatore di corrente ad una determinata tensione. Questo utilizzo è anche detto utilizzo fotovoltaico. La corrente erogata, e la conseguente potenza elettrica generata è presente sempre nella forma di corrente inversa. Questa modalità di funzionamento è il principio con cui la cella fotovoltaica opera.

Materiali[modifica | modifica wikitesto]

Il materiale con cui è prodotto il fotodiodo è di importanza critica per il suo funzionamento. Da essi dipende infatti l'energia minima che il fotone dovrà possedere per poter generare la fotocorrente.

I materiali più comunemente utilizzati per produrre fotodiodi sono:

Materiale Lunghezza d'onda (nm)
Silicio 190–1100
Germanio 800–1700
Arseniuro di indio gallio 800–2600
Solfuro di piombo <1000-3500

Funzionamento circuitale[modifica | modifica wikitesto]

Dal punto di vista circuitale, il fotodiodo è un diodo che viene utilizzato in polarizzazione inversa e che comprende (ma non limita il suo fuzionamento a) tutte le caratteristiche dei diodi.

Parametri di efficienza[modifica | modifica wikitesto]

Nel valutare i fotodiodi si utilizzano sempre due parametri di efficienza per valutare e compararne le prestazioni: l'efficienza quantica e la responsività. Esse sono definite in questo modo:

Efficienza quantica: L'efficienza quantica è il numero di EHP generate per ogni fotone incidente.
L'equazione che rappresenta questo parametro è:

{\eta}=\frac {\frac {I_{ph}}{e}}{\frac {P_0}{h \nu}}

dove {I_{ph}} è la fotocorrente generata, e è la carica dell'elettrone, h la costante di Planck e {\nu} è la frequenza della luce incidente.

Responsività: La responsività è il rapporto tra la fotocorrente generata e la potenza ottica incidente.
Anch'essa ha un'equazione che la definisce:

R=\frac {I_{ph}}{P_o}.

Esiste una relazione tra i parametri di efficienza per cui:

R={\eta}\frac {e}{{h}{\nu}}

Grazie a questa relazione è possibile passare da un parametro di efficienza all'altro comodamente. Ricordando poi che la frequenza \nu può essere riscritta come

\nu = \frac{c}{\lambda}

con c velocità della luce e \lambda lunghezza d'onda della luce incidente, si può scrivere

R=\eta \frac{e}{hc} \lambda

dove, esprimendo con  \lambda_{\mu m} la lunghezza d'onda in micron del segnale luminoso incidente e svolgendo il prodotto delle costanti, si ottiene la relazione:

R=0.807\eta\lambda_{\mu m}

Frequenza di funzionamento[modifica | modifica wikitesto]

Come tutti i dispositivi a giunzione, anche il fotodiodo presenta delle capacità parassite dovute alla presenza della giunzione stessa. Nel caso del fotodiodo, l'effetto capacitivo parassita è ulteriormente incrementato dal fatto che il dispositivo deve essere utilizzato in polarizzazione inversa, con quindi un incremento significativo della regione di svuotamento e quindi della capacità parassita. La capacità è in genere approssimabile con la seguente equazione:

{C_{dep}}={\varepsilon_0}{\varepsilon_r}\frac {A}{L}.

Dove A è la superficie delle interfacce delle aree drogate ed L è la lunghezza della zona svuotata.
La capacità qui approssimata, risentirà degli effetti della resistenza di carico del rivelatore. Questa situazione farà sì che il fotodiodo avrà una frequenza di taglio propria la cui costante {\tau} sarà:

{\tau}={R}{C_{dep}}.

Tipologie di fotodiodi[modifica | modifica wikitesto]

Singolo chip con serie di 200 diodi

Esistono molti tipi di fotodiodi, che si differenziano per progettazione interna ed efficienza.
Il più comune, utilizzato per applicazioni a basso rumore è il modello PiN, mentre per applicazioni che necessitano di alto segnale è stato creato il fotodiodo APD (o fotodiodo a valanga).

Utilizzi dei fotodiodi[modifica | modifica wikitesto]

Un fotorivelatore per CD-ROM contenente 3 fotodiodi.

Tra gli innumerevoli impieghi del fotodiodo, i più diffusi sono quelli nel campo delle fibre ottiche ovvero nelle comunicazioni ottiche, dove sono utilizzati per il riconoscimento del segnale contenente l'informazione ovvero come dispositivi di ricezione, nel campo della misurazione di precisione e nel campo della fotografia digitale.

In quanto particolare tipo di fotorivelatore è utilizzabile nelle celle fotoelettriche e nelle celle fotovoltaiche.

Utilizzi particolari sono quelli che si trovano negli isolatori ottici.

Nel campo biomedicale, si segnala l'utilizzo di fotodiodi nella sperimentazione della visione artificiale, progetto che vede l'impiego dei fotorivelatori in sostituzione di coni danneggiati. Un esempio di tale utilizzo è riscontrabile nel progetto MARC.

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]