Formula di coarea

Da Wikipedia, l'enciclopedia libera.

In matematica, più precisamente nell'ambito della teoria della misura, la formula di coarea permette di calcolare l'integrale del gradiente di una funzione in termini dell'integrale dei suoi insiemi di livello. Tale formula viene spesso utilizzata per problemi isoperimetrici.

Enunciato[modifica | modifica sorgente]

È possibile enunciare due versioni per la formula di coarea.

Prima versione[modifica | modifica sorgente]

Indicando con \mathcal{H}^{n-1} la misura di Hausdorff (n-1)-dimensionale allora, se f:\R^n\rightarrow \R è una funzione lipschitziana e E un insieme misurabile, vale la formula:

 \int_{E} | \nabla f(x)| dx = \int _{\mathbb{R}} \mathcal{H}^{n-1} (E \cap f^{-1}(t)) dt

Seconda versione[modifica | modifica sorgente]

È possibile dare un'altra versione della formula di coarea, nella quale al primo membro compare anche un'altra funzione g non negativa e misurabile. Sia f:\mathbb{R}^n\rightarrow \mathbb{R} Lipschitziana e sia E un insieme misurabile. Sia inoltre g:\mathbb{R}^n\rightarrow [0,+\infty] una funzione misurabile. Allora vale la formula:

\int_{E} g(x)| \nabla f(x)| dx = \int _{\mathbb{R}} \left( \int_{E\cap f^{-1}(t)} g(y) d\mathcal{H}^{n-1}\right)dt

Applicazioni[modifica | modifica sorgente]

Spesso la formula di coarea viene utilizzata nella sua seconda versione per il calcolo di un integrale di una funzione a simmetria radiale. Infatti, per calcolare l'ntegrale di g, scegliendo f=|x| si ottiene:

\int_{E} g(x) dx = \int _{\mathbb{R}} \left( \int_{E\cap B_r} g(y) d\mathcal{H}^{n-1}\right)dr

dove B_r è la palla centrata nell'origine di raggio r.

Viene anche utilizzata per dimostrare la disuguaglianza di Pólya-Szegő.

Bibliografia[modifica | modifica sorgente]

  • (EN) Ambrosio, Fusco, Pallara, Function of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000.
  • (EN) Fleming, WH; Rishel, R (1960), "An integral formula for the total gradient variation", Archiv der Mathematik 11 (1): 218–222, doi:10.1007/BF01236935
  • (EN) Malý, J; Swanson, D; Ziemer, W (2002), "The co-area formula for Sobolev mappings", Transactions of the American Mathematical Society 355 (2): 477–492, doi:10.1090/S0002-9947-02-03091-X.

Voci correlate[modifica | modifica sorgente]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica