Correttezza (logica matematica)

Da Wikipedia, l'enciclopedia libera.

In logica matematica, la correttezza è una proprietà fondamentale delle regole logiche e dei calcoli logici.

Una regola logica (o regola di inferenza o regola di derivazione) è corretta se la conclusione è conseguenza logica delle (ossia, segue necessariamente dalle) premesse: se sono vere tutte le premesse allora è necessariamente vera la conclusione (o equivalentemente, non è possibile che le premesse siano tutte vere e la conclusione falsa). Ciò significa che, lette dall'alto verso il basso (dalle premesse alla conclusione), le regole logiche corrette preservano la verità, o equivalentemente, lette dal basso verso l'alto (dalla conclusione alle premesse) le regole logiche corrette preservano la falsità (se la conclusione è falsa, allora è necessariamente falsa almeno una delle premesse).

Un calcolo logico (ad esempio il calcolo dei sequenti o la deduzione naturale) è corretto in senso debole se ogni formula A derivabile in esso è valida, ossia se ogni formula A dimostrabile applicando un numero finito di volte le regole di derivazione del calcolo logico è vera per ogni modello. Un calcolo logico è corretto in senso forte se ogni formula A derivabile in esso a partire da un insieme di formule chiuse X (che fungono da assiomi di un teoria) è conseguenza logica di X. È evidente che la correttezza forte implica la correttezza debole: basta prendere per X un insieme vuoto di formule.

La correttezza è (assieme alla completezza semantica) un requisito essenziale di ogni calcolo logico, pertanto ciascuno di questi presenta un teorema di correttezza (debole o forte) che esprime appunto il fatto che tale calcolo logico è corretto (in senso debole o forte). Il teorema di correttezza debole (risp. forte) è il viceversa del teorema di completezza semantica debole (risp. forte).

Detto in modo intuitivo, un calcolo logico in quanto corretto è in grado di dimostrare solo le verità di una teoria, mentre in quanto completo (semanticamente) è in grado di dimostrare tutte le verità di una teoria.

Voci correlate[modifica | modifica wikitesto]