Bucket sort

Da Wikipedia, l'enciclopedia libera.
Bucket sort
Classe Algoritmo di ordinamento
Struttura dati Array
Caso peggiore temporalmente O(n\log n)
Ottimale ?

Il Bucket sort è un algoritmo di ordinamento per valori numerici che si assume siano distribuiti uniformemente in un intervallo [0,1). La complessità del bucket sort è lineare O(n).

Spiegazione astratta[modifica | modifica wikitesto]

La prima parte dell'algoritmo: divisione nei bucket.

Se n è il numero di elementi da ordinare, l'intervallo [0,1) è diviso in n intervalli di uguale lunghezza, detti bucket (cesto). Ciascun valore dell'array è quindi inserito nel bucket a cui appartiene, i valori all'interno di ogni bucket vengono ordinati e l'algoritmo si conclude con la concatenazione dei valori contenuti nei bucket.

Seconda parte dell'algoritmo: ordinamento dei bucket e concatenazione.

Pseudo-codice[modifica | modifica wikitesto]

 BucketSort(array A, intero N)
   for i ← 1 to length[A] do     
     // restituisce un indice di bucket per l'elemento A[i]
     bucket ← f(A[i], N)           
     // inserisce l'elemento A[i] nel bucket corrispondente
     aggiungi(A[i], B[bucket])
   for i ← 1 to N do
     // ordina il bucket
     ordina(B[i])
   // restituisce la concatenazione dei bucket
   return concatena(B)

N è il numero di bucket da usare, la funzione f calcola il bucket in cui inserire l'elemento, ordina è un algoritmo di ordinamento e concatena restituisce un array composto dalla concatenazione dei valori dei bucket.

Complessità[modifica | modifica wikitesto]

La complessità del bucket sort è O(n) per tutti i cicli, a parte l'ordinamento dei singoli bucket. Date le premesse sull'input, come descritto in Introduction to Algorithms[1], utilizzando insertion sort l'ordinamento di ogni bucket è dell'ordine di \Theta(1), quindi la complessità media di O(n) per tutto l'algoritmo.

Note[modifica | modifica wikitesto]

  1. ^ Cormen, pag. 182

Bibliografia[modifica | modifica wikitesto]

  • (EN) Thomas Cormen, Charles E. Leiserson e Ronald Rivest, Sorting in Linear Time in Introduction to Alorithms, 2ª ed., Cambridge, Massachusetts, The MIT Press, 1998, pp. 180-182, ISBN 0-262-53091-0.

Altri progetti[modifica | modifica wikitesto]

informatica Portale Informatica: accedi alle voci di Wikipedia che trattano di informatica