Approssimazione di Born-Oppenheimer

Da Wikipedia, l'enciclopedia libera.

L'approssimazione di Born-Oppenheimer, nota anche come approssimazione adiabatica, è una tecnica usata in chimica quantistica e nella fisica della materia condensata al fine di disaccoppiare i moti di nuclei ed elettroni (cioè per separare le variabili corrispondenti al moto nucleare e le coordinate elettroniche nella equazione di Schrödinger associata alla Hamiltoniana molecolare). Si basa sul fatto che le tipiche velocità elettroniche sono molto maggiori di quelle nucleari.

Derivazione euristica dell'approssimazione[modifica | modifica sorgente]

Poiché le masse dei nuclei atomici sono molto maggiori di quelle degli elettroni orbitanti (un nucleone pesa circa 2000 volte più di un elettrone), gli elettroni hanno velocità molto maggiori di quelle dei nuclei. Per avere un'idea degli ordini di grandezza coinvolti, notiamo che la velocità tipica di un elettrone all'interno di un atomo è circa 10^6 ms^{-1} (velocità di Fermi) mentre quella di un nucleo è circa 10^2ms^{-1} (velocità del suono). Il sistema di elettroni può quindi rispondere rapidamente a cambiamenti nella configurazione dei nuclei, rimanendo così nello stato fondamentale (per quella particolare configurazione).

Possiamo così considerare il moto degli elettroni disaccoppiato da quello dei nuclei, cosa che permette di eliminare alcuni termini dall'equazione di Schrödinger: in pratica si va oltre, risolvendo il problema quantistico solo per i sistemi di elettroni e trattando i nuclei o come fissi in un reticolo oppure con qualche grado di libertà fononico. I termini trascurati dell'Hamiltoniana completa si prendono in considerazione ad un livello successivo; in una molecola, essi sono detti coupling vibrazionale.

Procedimento[modifica | modifica sorgente]

L'approssimazione di Born-Oppenheimer consiste schematicamente di tre passi successivi:

  • Si risolve dapprima l'equazione di Schrödinger solo per l'Hamiltoniana elettronica.
  • Nell'Hamiltoniana completa, si sostituisce l'Hamiltoniana elettronica con i suoi autovalori, che sono adiabaticamente dipendenti dalla geometria del sistema.
  • La funzione d'onda dello stato stazionario del sistema completo viene approssimata dal prodotto delle soluzioni dei problemi elettronico e nucleare discussi nei punti precedenti.

Validità[modifica | modifica sorgente]

L'approssimazione di Born-Oppenheimer è valida nella maggioranza di casi di interesse ed è una parte fondamentale e di routine nello studio di solidi e sistemi molecolari. È implicitamente usata nella maggior parte dei problemi di chimica computazionale.

Bibliografia[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]

meccanica quantistica Portale Meccanica quantistica: accedi alle voci di Wikipedia che trattano di meccanica quantistica