Antiferromagnetismo

Da Wikipedia, l'enciclopedia libera.
Ordinamento antiferromagnetico

L'antiferromagnetismo è una proprietà caratteristica di alcuni materiali come il manganese, il cromo, l'ematite, gli ossidi MnO2, FeO, CoO, ecc.; tali materiali sono detti antiferromagnetici. In tali materiali, contrariamente a quanto accade per i materiali ferromagnetici in cui la configurazione di minima energia si ha per spin paralleli, l’interazione tra gli atomi è tale da realizzare una configurazione di minima energia quando gli spin sono antiparalleli.[1]

Nel MnO2, ad esempio, lo ione negativo ossigeno ha su ogni lato uno ione positivo di manganese. I momenti di dipolo magnetico degli ioni positivi sono allineati antiparallelamente essendo ognuno accoppiato con uno degli spin elettronici, orientati nella direzione opposta, dello ione ossigeno, dando così luogo ad una configurazione di energia minima per l'intero sistema.

La magnetizzazione di questi materiali, al di sotto di una certa temperatura detta di Néel, e in assenza di campo magnetico esterno, è praticamente nulla. Anche quando vi è un campo magnetico esterno, i dipoli magnetici tendono a mantenere la disposizione antiferromagnetica[2].

A causa di difetti nella struttura atomica, la configurazione antiparallela non è mai perfettamente rispettata, e si genera pertanto un piccolo momento magnetico residuo; questo fenomeno è detto ferromagnetismo parassita[3].

Note[modifica | modifica sorgente]

  1. ^ (EN) IUPAC Gold Book, "magnetic transition"
  2. ^ C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation, Phys. Rev. B 73, 220402(R) (2006).
  3. ^ R. Giannini, "Magnetismo e Materiali Magnetici", [1].

Bibliografia[modifica | modifica sorgente]

  • Corrado Mencuccini, Vittorio Silvestrini, Fisica II, Napoli, Liguori Editore, 2010, ISBN 978-88-207-1633-2.
  • Jerry D. Wilson, Antony J. Buffa, Fisica 3, Milano, Principato, 2000, ISBN 88-416-5803-7
  • Paride Nobel, Fenomeni fisici, Napoli, Editrice Ferraro, 1994 ISBN 88-7271-126-6
  • K. H. J. Buschow, Encyclopedia of materials : science and technology, Elsevier, 2001, ISBN 0-08-043152-6.
  • Charles Kittel, Introduction to Solid State Physics, sixth, John Wiley & Sons, 1986, ISBN 0-471-87474-4.
  • Ramon Pallàs-Areny e John G Webster, Sensors and Signal Conditioning, 2nd, John Wiley & Sons, 2001, pp. 262–263, ISBN 978-0-471-33232-9.
  • Nicola A. Spaldin, Magnetic materials : fundamentals and applications, 2nd, Cambridge, Cambridge University Press, 2010, ISBN 978-0-521-88669-7.
  • Harald Ibach e Hans Lüth, Solid-state physics : an introduction to principles of materials science, 4th extensively updated and enlarged, Berlin, Springer, 2009, ISBN 978-3-540-93803-3.
  • Robert A Levy, Principles of Solid State Physics, Academic Press, 1968, ISBN 978-0124457508.
  • H.Y Fan, Elements of Solid State Physics, Wiley-Interscience, 1987, ISBN 978-0-471-85987-1.
  • Adrianus J Dekker, Solid State Physics, Macmillan, 1958, ISBN 978-0-333-10623-5.
  • N Cusack, The Electrical and Magnetic Properties of Solids, Longmans, Green, 1958.
  • J.R. Hook, H.E. Hall, Solid state physics, 2nd, Chichester, Wiley, 1994, ISBN 0-471-92805-4.
  • André Guinier ; Rémi Jullien, The solid state from superconductors to superalloys, Pbk., Oxford, Oxford Univ. Press, 1989, ISBN 0-19-855554-7.
  • K. Mendelssohn, The quest for absolute zero : the meaning of low temperature physics, with S.I. units., 2nd, London, Taylor and Francis, 1977, ISBN 0-85066-119-6.
  • H.P. Myers, Introductory solid state physics., 2nd ed., London, Taylor & Francis, 1997, ISBN 0-7484-0660-3.
  • Charles Kittel, Introduction to solid state physics, 7. ed., New York [u.a.], Wiley, 1996, ISBN 0-471-11181-3.
  • John Palmer, Planar Ising correlations, [Online-Ausg.]., Boston, Birkhäuser, 2007, ISBN 978-0-8176-4620-2.
  • Dalía S Bertoldi, Bringa, Eduardo M; Miranda, E N, Analytical solution of the mean field Ising model for finite systems in Journal of Physics: Condensed Matter, vol. 24, nº 22, 6 giugno 2012, pp. 226004, Bibcode:2012JPCM...24v6004B, DOI:10.1088/0953-8984/24/22/226004. URL consultato il 12/02/2013.
  • Robert Brout, Phase Transitions, New York, Amsterdam, W.A.Benjamin.INC, 1965.
  • C. Rau, Jin, C.; Robert, M., Ferromagnetic order at Tb surfaces above the bulk Curie temperature in Journal of Applied Physics, vol. 63, nº 8, 1 gennaio 1988, pp. 3667, Bibcode:1988JAP....63.3667R, DOI:10.1063/1.340679.
  • R. Skomski, Sellmyer, D. J., Curie temperature of multiphase nanostructures in Journal of Applied Physics, vol. 87, nº 9, 1 gennaio 2000, pp. 4756, Bibcode:2000JAP....87.4756S, DOI:10.1063/1.373149.
  • Victor Lopez-Dominguez, Hernàndez, Joan Manel; Tejada, Javier; Ziolo, Ronald F., Colossal Reduction in Curie Temperature Due to Finite-Size Effects in CoFe O Nanoparticles in Chemistry of Materials, vol. 25, nº 1, 8 gennaio 2013, pp. 6–11, DOI:10.1021/cm301927z.
  • S. K. Bose, Kudrnovský, J.; Drchal, V.; Turek, I., Pressure dependence of Curie temperature and resistivity in complex Heusler alloys in Physical Review B, vol. 84, nº 17, 1 novembre 2011, arXiv:1010.3025, Bibcode:2011PhRvB..84q4422B, DOI:10.1103/PhysRevB.84.174422.
  • John G. Webster, The measurement, instrumentation, and sensors handbook, [Online-Ausg.], Boca Raton, Fla., CRC Press published in cooperation with IEEE Press, 1999, ISBN 0-8493-8347-1.
  • Attay Kovetz, The principles of electromagnetic theory., 1st published., Cambridge [England], Cambridge University Press, 1990, ISBN 0-521-39997-1.
  • Rolf E. Hummel, Electronic properties of materials, 3. ed., New York [u.a.], Springer, 2001, ISBN 0-387-95144-X.
  • K.J. Pascoe, Properties of materials for electrical engineers., New York, N.Y., J. Wiley and Sons, 1973, ISBN 0-471-66911-3.
  • Paulsen, Jason A. Lo, Chester C H; Snyder, John E.; Ring, A. P.; Jones, L. L.; Jiles, David C. Jones, Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications, 39 , Issue: 5, settembre 2003, pp. 3316–3318.
  • Hae Jin Hwang, Nagai, Toru; Ohji, Tatsuki; Sando, Mutsuo; Toriyama, Motohiro; Niihara, Koichi, Curie Temperature Anomaly in Lead Zirconate Titanate/Silver Composites in Journal of the American Ceramic Society, vol. 81, nº 3, 21 gennaio 2005, pp. 709–712, DOI:10.1111/j.1151-2916.1998.tb02394.x.
  • Aymeric Sadoc, Mercey, Bernard; Simon, Charles; Grebille, Dominique; Prellier, Wilfrid; Lepetit, Marie-Bernadette, Large Increase of the Curie Temperature by Orbital Ordering Control in Physical Review Letters, vol. 104, nº 4, 1 gennaio 2010, arXiv:0910.3393, Bibcode:2010PhRvL.104d6804S, DOI:10.1103/PhysRevLett.104.046804.
  • Pierre Curie - Biography in Nobelprize.org, From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967, The Nobel Foundation 1903. URL consultato il 14/03/2013.

Voci correlate[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]