Algoritmo rho di Pollard

Da Wikipedia, l'enciclopedia libera.

L'algoritmo rho di Pollard è un algoritmo di fattorizzazione di numeri interi, basato sull'aritmetica modulare. Ideato da John Pollard nel 1975, è adatto in particolare alla ricerca di fattori piccoli; è stato usato nel 1981 per fattorizzare l'ottavo numero di Fermat. È un algoritmo probabilistico, nel senso che non garantisce di produrre un risultato.

Algoritmo[modifica | modifica wikitesto]

L'algoritmo si basa sulla generazione di una sequenza pseudo-casuale di numeri modulo n (che è il numero che si cerca di fattorizzare): una sequenza ampiamente usata è

\begin{cases}x_0=2\\ f(x_{i+1})=x_i^2+1\mod n\end{cases}

dove xk è il k-esimo numero della sequenza. Se la successione è "sufficientemente casuale", allora si dovrebbe osservare un ciclo dopo circa \sqrt{n\pi/2} iterazione; se però p è un fattore di n, allora la sequenza si ripeterà anche modulo p, ma dopo circa \sqrt{p\pi/2} passi.

Poiché tuttavia p non è conosciuto, bisogna ricorrere ad un altro metodo per verificare le eventuali ripetizioni, e cioè calcolare il massimo comun divisore tra n e la differenza xi-xj, per ogni coppia (i,j). Nella pratica, tuttavia, calcolare il massimo comun divisore per ogni coppia di indici renderebbe il test molto lento, quasi quanto il metodo delle divisioni per tentativi: si può dimostrare però che è sufficiente considerare le differenze x2i-xi, velocizzando notevolmente l'esecuzione dell'algoritmo.

È possibile tuttavia che il massimo comun divisore sia n: in tal caso l'algoritmo ha fallito, ed è necessario riprovare con un'altra sequenza, oppure con un diverso punto di partenza. Se n' è primo, il metodo fallisce per ogni successione e ogni punto di partenza.

La complessità computazionale dell'algoritmo è, nella notazione O-grande, O(p^{1/2}\ln^2(n)) dove p è il fattore di n; volendolo esprimere in funzione di quest'ultimo, è O(n^{1/4}\ln^2(n))

Pseudocodice[modifica | modifica wikitesto]

  1. x=2, y=2, d=1;
  2. While (d=1)
    1. x=f(x);
    2. y=f(f(x));
    3. d=MCD(|x-y|,n);
  3. Se d=n l'algoritmo fallisce; altrimenti d divide n

Bibliografia[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica